Dream / app.py
multimodalart's picture
Update app.py
badae07 verified
raw
history blame
32.1 kB
# dream_app.py
import torch
import numpy as np
import gradio as gr
import spaces # Ensure spaces is installed if needed for GPU decorator
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import re
from typing import List, Dict, Tuple, Optional
import torch.distributions as dists # Added import
# --- START: Copied Helper functions from generation_utils.py ---
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
def top_p_logits(logits, top_p=None):
""" Applies top-p filtering to logits. """
if top_p is None or top_p >= 1.0:
return logits
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
return logits
def top_k_logits(logits, top_k=None):
""" Applies top-k filtering to logits. """
if top_k is None or top_k <= 0:
return logits
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
return logits
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
""" Samples tokens based on logits and calculates confidence. """
if temperature > 0:
# Prevent division by zero or negative temperatures
safe_temp = max(temperature, 1e-6)
logits = logits / safe_temp
if top_p is not None and top_p < 1.0: # Apply top_p if valid
logits = top_p_logits(logits, top_p)
if top_k is not None and top_k > 0: # Apply top_k if valid
logits = top_k_logits(logits, top_k)
# Ensure logits are not all -inf after filtering, if so, sample uniformly? Or handle error.
# Add a check here: if all logits are -inf, assign uniform probability.
is_all_neg_inf = torch.all(logits == torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
if torch.any(is_all_neg_inf):
# print("Warning: All logits became -inf after filtering. Assigning uniform probabilities.")
uniform_logits = torch.zeros_like(logits)
logits = torch.where(is_all_neg_inf, uniform_logits, logits)
probs = torch.softmax(logits, dim=-1)
# Clamp probabilities to avoid NaNs in sampling, ensure they sum to 1
probs = torch.clamp(probs, min=0.0) # Ensure non-negative
probs = probs / probs.sum(dim=-1, keepdim=True) # Re-normalize
probs = torch.nan_to_num(probs, nan=0.0) # Handle any remaining NaNs
if temperature > 0:
try:
x0 = dists.Categorical(probs=probs).sample()
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
except Exception as e: # Catch broader exceptions during sampling
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.")
confidence, x0 = probs.max(dim=-1)
else: # Greedy decoding (temperature == 0)
confidence, x0 = probs.max(dim=-1)
if margin_confidence:
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
# Ensure there are at least 2 probabilities to compare
top1_probs = sorted_probs[..., 0]
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs # Handle case with only 1 possible token
confidence = top1_probs - top2_probs
if neg_entropy:
epsilon = 1e-10
# Ensure probs are > 0 for log
log_probs = torch.log(probs + epsilon)
confidence = torch.sum(probs * log_probs, dim=-1) # Should be negative entropy
# Ensure confidence is not NaN
confidence = torch.nan_to_num(confidence, nan=0.0)
return confidence, x0
# --- END: Copied Helper functions ---
# [Keep model loading, constants, helper functions: parse_constraints, format_chat_history, apply_constraints_to_state]
# Load model configuration to get special token IDs
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
# Use AutoModel for the base model loading, relying on trust_remote_code=True
# for the custom DreamModel class and generation mixin.
model_path = "Dream-org/Dream-v0-Instruct-7B"
# Determine device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# Load model and tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Loading model...")
# Ensure torch_dtype is set appropriately for your hardware if needed
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32, # Use bfloat16 only on CUDA
trust_remote_code=True,
attn_implementation="sdpa" # Explicitly request SDPA if available/desired
)
model = model.to(device).eval()
print("Model loaded.")
# Constants from Dream's config/tokenizer
MASK_TOKEN = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id # Use tokenizer's mask_token_id directly
PAD_ID = tokenizer.pad_token_id # Use tokenizer's pad_token_id
EOS_ID = tokenizer.eos_token_id # Use tokenizer's eos_token_id
if MASK_ID is None:
print("Warning: Mask token ID not found in config/tokenizer. Trying to fetch from tokenizer...")
mask_token_special = tokenizer.mask_token
if mask_token_special:
MASK_ID = tokenizer.convert_tokens_to_ids(mask_token_special)
print(f"Found MASK_ID from tokenizer: {MASK_ID}")
else:
raise ValueError("Cannot determine MASK_ID. Check model's tokenizer configuration.")
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
try:
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
SPECIAL_TOKEN_IDS.add(IM_START_ID)
SPECIAL_TOKEN_IDS.add(IM_END_ID)
except KeyError:
print("Warning: <|im_start|> or <|im_end|> not found in tokenizer vocab.")
IM_START_ID = None
IM_END_ID = None
# --- Helper Functions ---
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
"""
Parse constraints in format: 'position:word, position:word, ...'
Returns a dictionary mapping the starting position (0-indexed from the start
of the *generated* sequence) to a list of token IDs for the constraint word.
"""
constraints = {}
if not constraints_text:
return constraints
parts = constraints_text.split(',')
for part in parts:
part = part.strip() # Remove leading/trailing whitespace from the part itself
if ':' not in part:
continue
pos_str, word = part.split(':', 1)
try:
pos = int(pos_str.strip())
word = word.strip() # Strip whitespace from word
token_ids = []
if word: # Only encode if word is not empty
# Add space prefix automatically if pos > 0 and word doesn't start with space
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
if token_ids and pos >= 0:
constraints[pos] = token_ids
elif not token_ids and word: # Don't warn for empty words after split
print(f"Warning: Could not tokenize constraint word '{word}'")
except ValueError:
print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
continue # Ignore malformed constraint parts
except Exception as e:
print(f"Warning: Error processing constraint '{part}': {e}")
continue
# print(f"Parsed constraints: {constraints}") # Debugging
return constraints
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
""" Formats chat history for the template. """
messages = []
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
return messages
def apply_constraints_to_state(
x: torch.Tensor,
prompt_length: int,
total_length: int,
parsed_constraints: Dict[int, List[int]],
current_step: Optional[int] = None # For logging/debugging
) -> torch.Tensor:
""" Applies constraints directly to the state tensor `x`. """
modified_x = x # Modify in place maybe okay? Let's stick with clone for safety.
modified_x = x.clone()
for rel_pos, word_token_ids in parsed_constraints.items():
abs_start_pos = prompt_length + rel_pos
abs_end_pos = abs_start_pos + len(word_token_ids)
if abs_start_pos < total_length and abs_end_pos <= total_length:
try:
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
except IndexError:
print(f"Warning (Step {current_step}): Constraint at {rel_pos} ('{tokenizer.decode(word_token_ids)}') goes out of bounds.")
except Exception as e:
print(f"Warning (Step {current_step}): Failed to apply constraint at {rel_pos}: {e}")
return modified_x
# --- Core Generation Logic with Live Visualization ---
@spaces.GPU # Decorator for Hugging Face Spaces GPU usage
@torch.no_grad() # Ensure no gradients are computed during generation
def generate_dream_response(
history: List[List[Optional[str]]],
gen_length: int,
steps: int,
constraints_text: str,
temperature: float,
top_p: Optional[float],
top_k: Optional[int],
alg: str,
alg_temp: Optional[float],
visualization_delay: float
) -> List[Tuple[str, str]]:
""" Generates text step-by-step and yields visualization states live. """
if not history or not history[-1][0]:
yield history, [("No input message found.", "red")], ""
return
# --- 1. Preparation ---
last_user_message = history[-1][0]
messages_for_template = format_chat_history(history) # Includes the latest user message
parsed_constraints = parse_constraints(constraints_text)
try:
inputs = tokenizer.apply_chat_template(
messages_for_template,
return_tensors="pt",
return_dict=True,
add_generation_prompt=True
)
input_ids = inputs.input_ids.to(device)
# Ensure prompt_attention_mask is also on the correct device
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
prompt_length = input_ids.shape[1]
except Exception as e:
print(f"Error applying chat template: {e}")
yield history, [("Error preparing input.", "red")], ""
return
eps = 1e-3
top_p_val = top_p if top_p is not None and 0.0 < top_p < 1.0 else None # Make sure top_p is > 0
top_k_val = top_k if top_k is not None and top_k > 0 else None
alg_temp_val = alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] and alg_temp is not None and alg_temp > 0 else None # Ensure > 0
# --- 2. Initialize Generation State ---
total_length = prompt_length + gen_length
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
x = torch.cat((input_ids, initial_generation_part), dim=1)
# --- Prepare Attention Mask for SDPA ---
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1) # Shape [B, N], dtype torch.long
# Convert attention mask for SDPA: Needs float matching query dtype.
# Where mask is 1 (attend), value should be 0.0. Where mask is 0 (don't attend), value should be -inf.
attention_mask_for_model = full_attention_mask_long.to(model.dtype) # Convert to model's dtype (e.g., bfloat16)
# Invert the mask logic: (1.0 - mask) gives 0s for attend, 1s for mask
# Multiply by large negative number (min value for dtype) for masked positions
large_neg_val = torch.finfo(model.dtype).min
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
# Ensure the shape is broadcastable, SDPA usually handles [B, N] -> [B, H, N, N] if needed.
# However, explicitly making it [B, 1, 1, N] or [B, 1, N, N] can be safer.
# Let's try passing [B, N] first, if it fails, reshape.
# Reshape to [B, 1, 1, N] which is commonly expected for additive masks by HF models
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2)
# Now shape is [B, 1, 1, N]
# --- Timesteps ---
timesteps = torch.linspace(1, eps, steps + 1, device=device)
# Apply initial constraints
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
# --- 3. Visualization Setup ---
previous_tokens_vis = None
final_response_text = ""
history_copy = [list(item) for item in history] # Mutable copy
# --- 4. Initial Yield (Masked State) ---
initial_generated_tokens = x[0, prompt_length:].cpu()
vis_data_initial = []
for tok_id in initial_generated_tokens.tolist():
display_token = MASK_TOKEN
color = "#444444" # Dark Gray for masks
vis_data_initial.append((display_token, color))
previous_tokens_vis = initial_generated_tokens
yield history_copy, vis_data_initial, ""
time.sleep(visualization_delay)
# --- 5. Step-by-Step Diffusion Loop ---
try:
start_time = time.time()
for i in range(steps):
mask_index = (x == MASK_ID)
if not mask_index.any():
print(f"No mask tokens left at step {i}. Stopping early.")
break
# --- Model Forward Pass ---
# Pass the correctly formatted float mask
outputs = model(
input_ids=x,
attention_mask=attention_mask_for_model, # Pass the [B, 1, 1, N] float mask
position_ids=None,
use_cache=False,
return_dict=True
)
logits = outputs.logits
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) # Align logits
mask_logits = logits[mask_index]
if mask_logits.numel() == 0:
print(f"No masked tokens found for logit selection at step {i}. Stopping.")
break
# --- Sampling / Remasking Logic ---
t = timesteps[i]
s = timesteps[i + 1]
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
if alg == 'origin':
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
num_masked = mask_logits.shape[0]
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
logits_to_sample = mask_logits[transfer_indices_relative]
if logits_to_sample.numel() > 0:
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
x_new_masked_part[transfer_indices_relative] = sampled_tokens
else: # Confidence-based algorithms
use_margin = (alg == 'topk_margin')
use_entropy = (alg == 'entropy')
confidence, x0_candidates = sample_tokens(
mask_logits,
temperature=temperature,
top_p=top_p_val,
top_k=top_k_val,
margin_confidence=use_margin,
neg_entropy=use_entropy
)
num_mask_token = mask_logits.shape[0]
target_num_revealed_float = num_mask_token * (1.0 - s / t)
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
if number_transfer_tokens > 0:
num_samples = min(number_transfer_tokens, num_mask_token) # Ensure k <= num_mask_token
if num_samples > 0: # Proceed only if we need to sample > 0 tokens
if alg_temp_val is None or alg_temp_val <= 0: # Top-k confidence
sort_metric = confidence if alg != 'entropy' else -confidence # Lower entropy = higher confidence
# Ensure k is not greater than the number of elements
k_topk = min(num_samples, sort_metric.numel())
if k_topk > 0:
_, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
else:
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
else: # Sample based on confidence temperature
# Ensure confidence has elements before processing
if confidence.numel() > 0:
conf_probs = confidence / alg_temp_val
# Handle potential inf/-inf before softmax, ensure non-negative probabilities
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9) # Use large numbers instead of inf
conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30) # Prevent large positive values leading to inf in exp
conf_probs = F.softmax(conf_probs, dim=-1)
conf_probs = torch.clamp(conf_probs, min=0.0) # Ensure non-negative
conf_probs = torch.nan_to_num(conf_probs, nan=0.0) # Handle NaNs
# Normalize probabilities if they don't sum to 1
prob_sum = conf_probs.sum()
if not torch.isclose(prob_sum, torch.tensor(1.0, device=device), atol=1e-4) and prob_sum > 0:
# print(f"Warning step {i}: Confidence probabilities sum {prob_sum:.4f} != 1. Re-normalizing.")
conf_probs = conf_probs / prob_sum
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(conf_probs.sum(), torch.tensor(1.0, device=device)):
try:
transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
except RuntimeError as e:
print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
sort_metric = confidence if alg != 'entropy' else -confidence
k_multinomial_fallback = min(num_samples, sort_metric.numel())
if k_multinomial_fallback > 0:
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
else:
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
else: # Handle cases where multinomial is not possible
# print(f"Warning step {i}: Invalid probabilities for multinomial sampling. Falling back to top-k.")
sort_metric = confidence if alg != 'entropy' else -confidence
k_multinomial_fallback = min(num_samples, sort_metric.numel())
if k_multinomial_fallback > 0:
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
else:
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
else: # No confidence values to sample from
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
# Apply the transfer
if transfer_indices_relative.numel() > 0:
# Ensure indices are within bounds of x0_candidates
valid_indices = transfer_indices_relative < x0_candidates.shape[0]
valid_transfer_indices = transfer_indices_relative[valid_indices]
if valid_transfer_indices.numel() > 0:
# Ensure indices are also within bounds of x_new_masked_part
if valid_transfer_indices.max() < x_new_masked_part.shape[0]:
x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
else:
print(f"Warning step {i}: transfer_indices out of bounds for x_new_masked_part.")
# Update the global state `x` only at the masked positions
x[mask_index] = x_new_masked_part
# --- Apply Constraints ---
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
# --- Yield Visualization ---
current_generated_tokens = x[0, prompt_length:].cpu()
vis_data = []
# [Keep visualization formatting logic the same]
for j in range(gen_length):
current_tok_id = current_generated_tokens[j].item()
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
try:
# Use replace to handle potential bytes rendering issues
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception:
display_token = f"[ID:{current_tok_id}]" # Fallback
color = None
token_to_display = display_token
if current_tok_id == MASK_ID:
color = "#444444" # Dark Gray for masks
elif previous_tok_id == MASK_ID: # Token was just revealed
color = "#66CC66" # Light Green
else: # Token was already revealed
color = "#6699CC" # Light Blue
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \
(EOS_ID is not None and current_tok_id == EOS_ID)
if should_hide and previous_tok_id == current_tok_id:
token_to_display = "" # Hide by making empty
color = None # No color for hidden
if token_to_display:
vis_data.append((token_to_display, color))
previous_tokens_vis = current_generated_tokens # Update for next step
intermediate_response_tokens = x[0, prompt_length:]
intermediate_response_text = tokenizer.decode(
intermediate_response_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
).strip()
yield history_copy, vis_data, intermediate_response_text
time.sleep(visualization_delay)
end_time = time.time()
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
# --- 6. Final Processing & Yield ---
final_sequence = x[0]
response_tokens = final_sequence[prompt_length:]
final_response_text = tokenizer.decode(
response_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
).strip()
history_copy[-1][1] = final_response_text
final_generated_tokens = x[0, prompt_length:].cpu()
vis_data_final = []
# [Keep final visualization formatting logic the same]
for j in range(gen_length):
current_tok_id = final_generated_tokens[j].item()
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
try:
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception:
display_token = f"[ID:{current_tok_id}]" # Fallback
color = None
token_to_display = display_token
if current_tok_id == MASK_ID: color = "#444444"
elif previous_tok_id == MASK_ID: color = "#66CC66"
else: color = "#6699CC"
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \
(EOS_ID is not None and current_tok_id == EOS_ID)
if should_hide and previous_tok_id == current_tok_id:
token_to_display = ""; color = None
if token_to_display: vis_data_final.append((token_to_display, color))
yield history_copy, vis_data_final, final_response_text
print("Visualization streaming complete.")
except Exception as e:
print(f"Error during generation or processing: {e}")
import traceback
traceback.print_exc()
yield history_copy, [("Error during generation.", "red")], ""
return
# --- Gradio UI (No changes needed here) ---
css = '''
.category-legend{display:none}
button{min-height: 60px}
'''
def create_chatbot_demo():
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
gr.Markdown(
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]" # Note: Link might be hypothetical
)
_chat_history_store = gr.State([]) # Hidden state to store actual history list
with gr.Row():
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(
label="Conversation",
height=500,
show_copy_button=True,
bubble_full_width=False,
)
with gr.Group():
with gr.Row():
user_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
scale=7,
autofocus=True,
show_label=False,
container=False
)
send_btn = gr.Button("Send", scale=1, variant="primary")
constraints_input = gr.Textbox(
label="Word Constraints (Optional)",
info="Place words at specific positions (0-indexed from start of generation). Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
placeholder="0:Hello, 10:world",
value=""
)
with gr.Column(scale=2):
output_vis = gr.HighlightedText(
label="Denoising Process Visualization",
combine_adjacent=True,
show_legend=False,
interactive=False
)
response_text_display = gr.Textbox(
label="Generated Response",
interactive=False,
lines=5
)
with gr.Accordion("Generation Settings", open=False):
with gr.Row():
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Temperature (0 = greedy)")
alg_temp = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Remasking Temp (Confidence Algs)")
with gr.Row():
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (0 disables)")
top_k = gr.Slider(minimum=0, maximum=200, value=0, step=5, label="Top-K (0 disables)")
with gr.Row():
remasking_strategy = gr.Radio(choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'], value='entropy', label="Remasking Strategy (Algorithm)")
with gr.Row():
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")
clear_btn = gr.Button("Clear Conversation")
def add_user_message_to_history(message: str, history_store: List[List[Optional[str]]]):
if not message.strip():
gr.Warning("Please enter a message.")
return history_store, history_store, "", [], ""
history_store.append([message, None])
return history_store, history_store, "", [], ""
def clear_conversation():
return [], [], "", [], ""
generation_inputs = [
_chat_history_store, gen_length, steps, constraints_input,
temperature, top_p, top_k, remasking_strategy, alg_temp,
visualization_delay
]
generation_outputs = [chatbot_ui, output_vis, response_text_display]
submit_listener = user_input.submit(
fn=add_user_message_to_history,
inputs=[user_input, _chat_history_store],
outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
).then(
fn=generate_dream_response,
inputs=generation_inputs,
outputs=generation_outputs,
show_progress="hidden"
)
click_listener = send_btn.click(
fn=add_user_message_to_history,
inputs=[user_input, _chat_history_store],
outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
).then(
fn=generate_dream_response,
inputs=generation_inputs,
outputs=generation_outputs,
show_progress="hidden"
)
clear_btn.click(
clear_conversation,
inputs=[],
outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
)
return demo
# --- Launch ---
if __name__ == "__main__":
demo = create_chatbot_demo()
demo.queue().launch(debug=True, share=False)