Spaces:
Build error
Build error
import gradio as gr | |
from dotenv import load_dotenv | |
from roboflow import Roboflow | |
from PIL import Image | |
import tempfile | |
import os | |
import requests | |
import cv2 | |
import numpy as np | |
import subprocess | |
# ========== Konfigurasi ========== | |
load_dotenv() | |
# Roboflow Config | |
rf_api_key = os.getenv("ROBOFLOW_API_KEY") | |
workspace = os.getenv("ROBOFLOW_WORKSPACE") | |
project_name = os.getenv("ROBOFLOW_PROJECT") | |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION")) | |
# OWLv2 Config | |
OWLV2_API_KEY = os.getenv("COUNTGD_API_KEY") | |
OWLV2_PROMPTS = ["bottle", "tetra pak","cans", "carton drink"] | |
# Inisialisasi Model YOLO | |
rf = Roboflow(api_key=rf_api_key) | |
project = rf.workspace(workspace).project(project_name) | |
yolo_model = project.version(model_version).model | |
# ========== Fungsi Deteksi Kombinasi ========== | |
# Fungsi untuk deteksi dengan resize | |
def detect_combined(image): | |
# Simpan gambar input ke file sementara | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
image.save(temp_file, format="JPEG") | |
temp_path = temp_file.name | |
try: | |
# Resize gambar input menjadi 640x640 | |
img = Image.open(temp_path) | |
img = img.resize((640, 640), Image.Resampling.LANCZOS) # Ganti ANTIALIAS dengan LANCZOS | |
img.save(temp_path, format="JPEG") | |
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ========== | |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json() | |
# Hitung per class Nestlé dan simpan bounding box (format: (x_center, y_center, width, height)) | |
nestle_class_count = {} | |
nestle_boxes = [] | |
for pred in yolo_pred['predictions']: | |
class_name = pred['class'] | |
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1 | |
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height'])) | |
total_nestle = sum(nestle_class_count.values()) | |
# ========== [2] OWLv2: Deteksi Kompetitor ========== | |
headers = { | |
"Authorization": "Basic " + OWLV2_API_KEY, | |
} | |
data = { | |
"prompts": OWLV2_PROMPTS, | |
"model": "owlv2", | |
"confidence": 0.25 # Set confidence threshold to 0.25 | |
} | |
with open(temp_path, "rb") as f: | |
files = {"image": f} | |
response = requests.post("https://api.landing.ai/v1/tools/text-to-object-detection", files=files, data=data, headers=headers) | |
result = response.json() | |
owlv2_objects = result['data'][0] if 'data' in result else [] | |
competitor_class_count = {} | |
competitor_boxes = [] | |
for obj in owlv2_objects: | |
if 'bounding_box' in obj: | |
bbox = obj['bounding_box'] # Format: [x1, y1, x2, y2] | |
# Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection) | |
if not is_overlap(bbox, nestle_boxes): | |
class_name = obj.get('label', 'unknown').strip().lower() | |
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1 | |
competitor_boxes.append({ | |
"class": class_name, | |
"box": bbox, | |
"confidence": obj.get("score", 0) | |
}) | |
total_competitor = sum(competitor_class_count.values()) | |
# ========== [3] Format Output ========== | |
result_text = "Product Nestle\n\n" | |
for class_name, count in nestle_class_count.items(): | |
result_text += f"{class_name}: {count}\n" | |
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n" | |
if competitor_class_count: | |
result_text += f"Total Unclassified Products: {total_competitor}\n" | |
else: | |
result_text += "No Unclassified Products detected\n" | |
# ========== [4] Visualisasi ========== | |
img = cv2.imread(temp_path) | |
# Gambar bounding box untuk produk Nestlé (Hijau) | |
for pred in yolo_pred['predictions']: | |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height'] | |
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2) | |
cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
# Gambar bounding box untuk kompetitor (Merah) dengan label 'unclassified' jika sesuai | |
for comp in competitor_boxes: | |
x1, y1, x2, y2 = comp['box'] | |
unclassified_classes = ["cans"] | |
display_name = "unclassified" if any(cls in comp['class'].lower() for cls in unclassified_classes) else comp['class'] | |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2) | |
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}", | |
(int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) | |
output_path = "/tmp/combined_output.jpg" | |
cv2.imwrite(output_path, img) | |
return output_path, result_text | |
except Exception as e: | |
return temp_path, f"Error: {str(e)}" | |
finally: | |
os.remove(temp_path) | |
def is_overlap(box1, boxes2, threshold=0.3): | |
""" | |
Fungsi untuk mendeteksi overlap bounding box. | |
Parameter: | |
- box1: Bounding box pertama dengan format (x1, y1, x2, y2) | |
- boxes2: List bounding box lainnya dengan format (x_center, y_center, width, height) | |
""" | |
x1_min, y1_min, x1_max, y1_max = box1 | |
for b2 in boxes2: | |
x2, y2, w2, h2 = b2 | |
x2_min = x2 - w2/2 | |
x2_max = x2 + w2/2 | |
y2_min = y2 - h2/2 | |
y2_max = y2 + h2/2 | |
dx = min(x1_max, x2_max) - max(x1_min, x2_min) | |
dy = min(y1_max, y2_max) - max(y1_min, y2_min) | |
if (dx >= 0) and (dy >= 0): | |
area_overlap = dx * dy | |
area_box1 = (x1_max - x1_min) * (y1_max - y1_min) | |
if area_overlap / area_box1 > threshold: | |
return True | |
return False | |
# ========== Fungsi untuk Deteksi Video ========== | |
def convert_video_to_mp4(input_path, output_path): | |
try: | |
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True) | |
return output_path | |
except subprocess.CalledProcessError as e: | |
return None, f"Error converting video: {e}" | |
def detect_objects_in_video(video_path): | |
temp_output_path = "/tmp/output_video.mp4" | |
temp_frames_dir = tempfile.mkdtemp() | |
all_class_count = {} # Untuk menyimpan total hitungan objek dari semua frame | |
nestle_total = 0 | |
frame_count = 0 | |
try: | |
# Convert video ke MP4 jika perlu | |
if not video_path.endswith(".mp4"): | |
video_path, err = convert_video_to_mp4(video_path, temp_output_path) | |
if not video_path: | |
return None, f"Video conversion error: {err}" | |
# Membaca dan memproses frame video | |
video = cv2.VideoCapture(video_path) | |
frame_rate = int(video.get(cv2.CAP_PROP_FPS)) | |
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
frame_size = (frame_width, frame_height) | |
# VideoWriter untuk output video | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size) | |
while True: | |
ret, frame = video.read() | |
if not ret: | |
break | |
# Simpan frame untuk prediksi | |
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg") | |
cv2.imwrite(frame_path, frame) | |
# Proses prediksi untuk frame | |
predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json() | |
# Update hitungan objek untuk frame ini | |
frame_class_count = {} | |
for prediction in predictions['predictions']: | |
class_name = prediction['class'] | |
frame_class_count[class_name] = frame_class_count.get(class_name, 0) + 1 | |
cv2.rectangle(frame, (int(prediction['x'] - prediction['width']/2), | |
int(prediction['y'] - prediction['height']/2)), | |
(int(prediction['x'] + prediction['width']/2), | |
int(prediction['y'] + prediction['height']/2)), | |
(0, 255, 0), 2) | |
cv2.putText(frame, class_name, (int(prediction['x'] - prediction['width']/2), | |
int(prediction['y'] - prediction['height']/2 - 10)), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
# Update hitungan kumulatif | |
for class_name, count in frame_class_count.items(): | |
all_class_count[class_name] = all_class_count.get(class_name, 0) + count | |
nestle_total = sum(all_class_count.values()) | |
# Overlay teks hitungan pada frame | |
count_text = "Cumulative Object Counts\n" | |
for class_name, count in all_class_count.items(): | |
count_text += f"{class_name}: {count}\n" | |
count_text += f"\nTotal Product Nestlé: {nestle_total}" | |
y_offset = 20 | |
for line in count_text.split("\n"): | |
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2) | |
y_offset += 30 | |
output_video.write(frame) | |
frame_count += 1 | |
video.release() | |
output_video.release() | |
return temp_output_path | |
except Exception as e: | |
return None, f"An error occurred: {e}" | |
# ========== Gradio Interface ========== | |
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface: | |
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Detect Object") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Counting Object") | |
# Tombol untuk memproses input | |
detect_button = gr.Button("Detect") | |
# Hubungkan tombol dengan fungsi deteksi | |
detect_button.click( | |
fn=detect_combined, | |
inputs=input_image, | |
outputs=[output_image, output_text] | |
) | |
iface.launch() |