testing-roboflow / app-fix-owlv2-seriusan.py
muhammadsalmanalfaridzi's picture
Rename app.py to app-fix-owlv2-seriusan.py
ab0680f verified
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
from PIL import Image
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# OWLv2 Config
OWLV2_API_KEY = os.getenv("COUNTGD_API_KEY")
OWLV2_PROMPTS = ["bottle", "tetra pak","cans", "carton drink"]
# Inisialisasi Model YOLO
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi Deteksi Kombinasi ==========
# Fungsi untuk deteksi dengan resize
def detect_combined(image):
# Simpan gambar input ke file sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# Resize gambar input menjadi 640x640
img = Image.open(temp_path)
img = img.resize((640, 640), Image.Resampling.LANCZOS) # Ganti ANTIALIAS dengan LANCZOS
img.save(temp_path, format="JPEG")
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
# Hitung per class Nestlé dan simpan bounding box (format: (x_center, y_center, width, height))
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ========== [2] OWLv2: Deteksi Kompetitor ==========
headers = {
"Authorization": "Basic " + OWLV2_API_KEY,
}
data = {
"prompts": OWLV2_PROMPTS,
"model": "owlv2",
"confidence": 0.25 # Set confidence threshold to 0.25
}
with open(temp_path, "rb") as f:
files = {"image": f}
response = requests.post("https://api.landing.ai/v1/tools/text-to-object-detection", files=files, data=data, headers=headers)
result = response.json()
owlv2_objects = result['data'][0] if 'data' in result else []
competitor_class_count = {}
competitor_boxes = []
for obj in owlv2_objects:
if 'bounding_box' in obj:
bbox = obj['bounding_box'] # Format: [x1, y1, x2, y2]
# Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
if not is_overlap(bbox, nestle_boxes):
class_name = obj.get('label', 'unknown').strip().lower()
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": bbox,
"confidence": obj.get("score", 0)
})
total_competitor = sum(competitor_class_count.values())
# ========== [3] Format Output ==========
result_text = "Product Nestle\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
if competitor_class_count:
result_text += f"Total Unclassified Products: {total_competitor}\n"
else:
result_text += "No Unclassified Products detected\n"
# ========== [4] Visualisasi ==========
img = cv2.imread(temp_path)
# Gambar bounding box untuk produk Nestlé (Hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Gambar bounding box untuk kompetitor (Merah) dengan label 'unclassified' jika sesuai
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
unclassified_classes = ["cans"]
display_name = "unclassified" if any(cls in comp['class'].lower() for cls in unclassified_classes) else comp['class']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
(int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
os.remove(temp_path)
def is_overlap(box1, boxes2, threshold=0.3):
"""
Fungsi untuk mendeteksi overlap bounding box.
Parameter:
- box1: Bounding box pertama dengan format (x1, y1, x2, y2)
- boxes2: List bounding box lainnya dengan format (x_center, y_center, width, height)
"""
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x2, y2, w2, h2 = b2
x2_min = x2 - w2/2
x2_max = x2 + w2/2
y2_min = y2 - h2/2
y2_max = y2 + h2/2
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if (dx >= 0) and (dy >= 0):
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_overlap / area_box1 > threshold:
return True
return False
# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
try:
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
return output_path
except subprocess.CalledProcessError as e:
return None, f"Error converting video: {e}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
all_class_count = {} # Untuk menyimpan total hitungan objek dari semua frame
nestle_total = 0
frame_count = 0
try:
# Convert video ke MP4 jika perlu
if not video_path.endswith(".mp4"):
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
if not video_path:
return None, f"Video conversion error: {err}"
# Membaca dan memproses frame video
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
# VideoWriter untuk output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
# Simpan frame untuk prediksi
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# Proses prediksi untuk frame
predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json()
# Update hitungan objek untuk frame ini
frame_class_count = {}
for prediction in predictions['predictions']:
class_name = prediction['class']
frame_class_count[class_name] = frame_class_count.get(class_name, 0) + 1
cv2.rectangle(frame, (int(prediction['x'] - prediction['width']/2),
int(prediction['y'] - prediction['height']/2)),
(int(prediction['x'] + prediction['width']/2),
int(prediction['y'] + prediction['height']/2)),
(0, 255, 0), 2)
cv2.putText(frame, class_name, (int(prediction['x'] - prediction['width']/2),
int(prediction['y'] - prediction['height']/2 - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Update hitungan kumulatif
for class_name, count in frame_class_count.items():
all_class_count[class_name] = all_class_count.get(class_name, 0) + count
nestle_total = sum(all_class_count.values())
# Overlay teks hitungan pada frame
count_text = "Cumulative Object Counts\n"
for class_name, count in all_class_count.items():
count_text += f"{class_name}: {count}\n"
count_text += f"\nTotal Product Nestlé: {nestle_total}"
y_offset = 20
for line in count_text.split("\n"):
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_offset += 30
output_video.write(frame)
frame_count += 1
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
with gr.Column():
output_image = gr.Image(label="Detect Object")
with gr.Column():
output_text = gr.Textbox(label="Counting Object")
# Tombol untuk memproses input
detect_button = gr.Button("Detect")
# Hubungkan tombol dengan fungsi deteksi
detect_button.click(
fn=detect_combined,
inputs=input_image,
outputs=[output_image, output_text]
)
iface.launch()