File size: 10,559 Bytes
1c1a855 8fb8dac 1c1a855 dd0f5ad 1c1a855 5b053cf 1c1a855 5b053cf 1c1a855 5b053cf ef81935 5b053cf 1c1a855 5b053cf 1c1a855 f519d8c 5b053cf f519d8c 5b053cf 1c1a855 5b053cf 1c1a855 5b053cf 1c1a855 667c435 1c1a855 152b618 1c1a855 15db8b0 1c1a855 667c435 1c1a855 5b053cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
from PIL import Image
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# OWLv2 Config
OWLV2_API_KEY = os.getenv("COUNTGD_API_KEY")
OWLV2_PROMPTS = ["bottle", "tetra pak","cans", "carton drink"]
# Inisialisasi Model YOLO
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi Deteksi Kombinasi ==========
# Fungsi untuk deteksi dengan resize
def detect_combined(image):
# Simpan gambar input ke file sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# Resize gambar input menjadi 640x640
img = Image.open(temp_path)
img = img.resize((640, 640), Image.Resampling.LANCZOS) # Ganti ANTIALIAS dengan LANCZOS
img.save(temp_path, format="JPEG")
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
# Hitung per class Nestlé dan simpan bounding box (format: (x_center, y_center, width, height))
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ========== [2] OWLv2: Deteksi Kompetitor ==========
headers = {
"Authorization": "Basic " + OWLV2_API_KEY,
}
data = {
"prompts": OWLV2_PROMPTS,
"model": "owlv2",
"confidence": 0.25 # Set confidence threshold to 0.25
}
with open(temp_path, "rb") as f:
files = {"image": f}
response = requests.post("https://api.landing.ai/v1/tools/text-to-object-detection", files=files, data=data, headers=headers)
result = response.json()
owlv2_objects = result['data'][0] if 'data' in result else []
competitor_class_count = {}
competitor_boxes = []
for obj in owlv2_objects:
if 'bounding_box' in obj:
bbox = obj['bounding_box'] # Format: [x1, y1, x2, y2]
# Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
if not is_overlap(bbox, nestle_boxes):
class_name = obj.get('label', 'unknown').strip().lower()
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": bbox,
"confidence": obj.get("score", 0)
})
total_competitor = sum(competitor_class_count.values())
# ========== [3] Format Output ==========
result_text = "Product Nestle\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
if competitor_class_count:
result_text += f"Total Unclassified Products: {total_competitor}\n"
else:
result_text += "No Unclassified Products detected\n"
# ========== [4] Visualisasi ==========
img = cv2.imread(temp_path)
# Gambar bounding box untuk produk Nestlé (Hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Gambar bounding box untuk kompetitor (Merah) dengan label 'unclassified' jika sesuai
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
unclassified_classes = ["cans"]
display_name = "unclassified" if any(cls in comp['class'].lower() for cls in unclassified_classes) else comp['class']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
(int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
os.remove(temp_path)
def is_overlap(box1, boxes2, threshold=0.3):
"""
Fungsi untuk mendeteksi overlap bounding box.
Parameter:
- box1: Bounding box pertama dengan format (x1, y1, x2, y2)
- boxes2: List bounding box lainnya dengan format (x_center, y_center, width, height)
"""
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x2, y2, w2, h2 = b2
x2_min = x2 - w2/2
x2_max = x2 + w2/2
y2_min = y2 - h2/2
y2_max = y2 + h2/2
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if (dx >= 0) and (dy >= 0):
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_overlap / area_box1 > threshold:
return True
return False
# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
try:
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
return output_path
except subprocess.CalledProcessError as e:
return None, f"Error converting video: {e}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
all_class_count = {} # Untuk menyimpan total hitungan objek dari semua frame
nestle_total = 0
frame_count = 0
try:
# Convert video ke MP4 jika perlu
if not video_path.endswith(".mp4"):
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
if not video_path:
return None, f"Video conversion error: {err}"
# Membaca dan memproses frame video
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
# VideoWriter untuk output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
# Simpan frame untuk prediksi
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# Proses prediksi untuk frame
predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json()
# Update hitungan objek untuk frame ini
frame_class_count = {}
for prediction in predictions['predictions']:
class_name = prediction['class']
frame_class_count[class_name] = frame_class_count.get(class_name, 0) + 1
cv2.rectangle(frame, (int(prediction['x'] - prediction['width']/2),
int(prediction['y'] - prediction['height']/2)),
(int(prediction['x'] + prediction['width']/2),
int(prediction['y'] + prediction['height']/2)),
(0, 255, 0), 2)
cv2.putText(frame, class_name, (int(prediction['x'] - prediction['width']/2),
int(prediction['y'] - prediction['height']/2 - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Update hitungan kumulatif
for class_name, count in frame_class_count.items():
all_class_count[class_name] = all_class_count.get(class_name, 0) + count
nestle_total = sum(all_class_count.values())
# Overlay teks hitungan pada frame
count_text = "Cumulative Object Counts\n"
for class_name, count in all_class_count.items():
count_text += f"{class_name}: {count}\n"
count_text += f"\nTotal Product Nestlé: {nestle_total}"
y_offset = 20
for line in count_text.split("\n"):
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_offset += 30
output_video.write(frame)
frame_count += 1
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
with gr.Column():
output_image = gr.Image(label="Detect Object")
with gr.Column():
output_text = gr.Textbox(label="Counting Object")
# Tombol untuk memproses input
detect_button = gr.Button("Detect")
# Hubungkan tombol dengan fungsi deteksi
detect_button.click(
fn=detect_combined,
inputs=input_image,
outputs=[output_image, output_text]
)
iface.launch() |