File size: 10,559 Bytes
1c1a855
 
 
8fb8dac
1c1a855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd0f5ad
1c1a855
 
 
 
 
 
 
5b053cf
 
 
1c1a855
5b053cf
1c1a855
 
 
5b053cf
 
ef81935
5b053cf
 
 
1c1a855
 
5b053cf
1c1a855
 
 
 
 
 
 
 
 
 
f519d8c
5b053cf
 
 
 
 
f519d8c
 
5b053cf
1c1a855
 
 
 
 
 
 
 
 
 
 
5b053cf
1c1a855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b053cf
1c1a855
 
 
 
 
 
667c435
1c1a855
152b618
1c1a855
 
15db8b0
1c1a855
 
 
667c435
1c1a855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b053cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
from PIL import Image
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess

# ========== Konfigurasi ==========
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# OWLv2 Config
OWLV2_API_KEY = os.getenv("COUNTGD_API_KEY")
OWLV2_PROMPTS = ["bottle", "tetra pak","cans", "carton drink"]

# Inisialisasi Model YOLO
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

# ========== Fungsi Deteksi Kombinasi ==========
# Fungsi untuk deteksi dengan resize
def detect_combined(image):
    # Simpan gambar input ke file sementara
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name

    try:
        # Resize gambar input menjadi 640x640
        img = Image.open(temp_path)
        img = img.resize((640, 640), Image.Resampling.LANCZOS)  # Ganti ANTIALIAS dengan LANCZOS
        img.save(temp_path, format="JPEG")

        # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
        yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()

        # Hitung per class Nestlé dan simpan bounding box (format: (x_center, y_center, width, height))
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))

        total_nestle = sum(nestle_class_count.values())

        # ========== [2] OWLv2: Deteksi Kompetitor ==========
        
        headers = {
            "Authorization": "Basic " + OWLV2_API_KEY,
        }
        data = {
            "prompts": OWLV2_PROMPTS,
            "model": "owlv2",
            "confidence": 0.25  # Set confidence threshold to 0.25
        }
        with open(temp_path, "rb") as f:
            files = {"image": f}
            response = requests.post("https://api.landing.ai/v1/tools/text-to-object-detection", files=files, data=data, headers=headers)
        result = response.json()
        owlv2_objects = result['data'][0] if 'data' in result else []

        competitor_class_count = {}
        competitor_boxes = []
        for obj in owlv2_objects:
            if 'bounding_box' in obj:
                bbox = obj['bounding_box']  # Format: [x1, y1, x2, y2]
                # Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
                if not is_overlap(bbox, nestle_boxes):
                    class_name = obj.get('label', 'unknown').strip().lower()
                    competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                    competitor_boxes.append({
                        "class": class_name,
                        "box": bbox,
                        "confidence": obj.get("score", 0)
                    })

        total_competitor = sum(competitor_class_count.values())

        # ========== [3] Format Output ==========
        result_text = "Product Nestle\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
        if competitor_class_count:
            result_text += f"Total Unclassified Products: {total_competitor}\n"
        else:
            result_text += "No Unclassified Products detected\n"

        # ========== [4] Visualisasi ==========
        img = cv2.imread(temp_path)

        # Gambar bounding box untuk produk Nestlé (Hijau)
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
            cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

        # Gambar bounding box untuk kompetitor (Merah) dengan label 'unclassified' jika sesuai
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            unclassified_classes = ["cans"]
            display_name = "unclassified" if any(cls in comp['class'].lower() for cls in unclassified_classes) else comp['class']
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
                        (int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)

        return output_path, result_text

    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    finally:
        os.remove(temp_path)

def is_overlap(box1, boxes2, threshold=0.3):
    """
    Fungsi untuk mendeteksi overlap bounding box.
    Parameter:
      - box1: Bounding box pertama dengan format (x1, y1, x2, y2)
      - boxes2: List bounding box lainnya dengan format (x_center, y_center, width, height)
    """
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x2, y2, w2, h2 = b2
        x2_min = x2 - w2/2
        x2_max = x2 + w2/2
        y2_min = y2 - h2/2
        y2_max = y2 + h2/2

        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if (dx >= 0) and (dy >= 0):
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_overlap / area_box1 > threshold:
                return True
    return False

# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
    try:
        subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
        return output_path
    except subprocess.CalledProcessError as e:
        return None, f"Error converting video: {e}"

def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()
    all_class_count = {}  # Untuk menyimpan total hitungan objek dari semua frame
    nestle_total = 0
    frame_count = 0

    try:
        # Convert video ke MP4 jika perlu
        if not video_path.endswith(".mp4"):
            video_path, err = convert_video_to_mp4(video_path, temp_output_path)
            if not video_path:
                return None, f"Video conversion error: {err}"

        # Membaca dan memproses frame video
        video = cv2.VideoCapture(video_path)
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_size = (frame_width, frame_height)

        # VideoWriter untuk output video
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)

        while True:
            ret, frame = video.read()
            if not ret:
                break

            # Simpan frame untuk prediksi
            frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
            cv2.imwrite(frame_path, frame)

            # Proses prediksi untuk frame
            predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json()

            # Update hitungan objek untuk frame ini
            frame_class_count = {}
            for prediction in predictions['predictions']:
                class_name = prediction['class']
                frame_class_count[class_name] = frame_class_count.get(class_name, 0) + 1
                cv2.rectangle(frame, (int(prediction['x'] - prediction['width']/2),
                                      int(prediction['y'] - prediction['height']/2)),
                              (int(prediction['x'] + prediction['width']/2),
                               int(prediction['y'] + prediction['height']/2)),
                              (0, 255, 0), 2)
                cv2.putText(frame, class_name, (int(prediction['x'] - prediction['width']/2),
                                                int(prediction['y'] - prediction['height']/2 - 10)),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

            # Update hitungan kumulatif
            for class_name, count in frame_class_count.items():
                all_class_count[class_name] = all_class_count.get(class_name, 0) + count

            nestle_total = sum(all_class_count.values())

            # Overlay teks hitungan pada frame
            count_text = "Cumulative Object Counts\n"
            for class_name, count in all_class_count.items():
                count_text += f"{class_name}: {count}\n"
            count_text += f"\nTotal Product Nestlé: {nestle_total}"

            y_offset = 20
            for line in count_text.split("\n"):
                cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
                y_offset += 30

            output_video.write(frame)
            frame_count += 1

        video.release()
        output_video.release()

        return temp_output_path

    except Exception as e:
        return None, f"An error occurred: {e}"

# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
        with gr.Column():
            output_image = gr.Image(label="Detect Object")
        with gr.Column():
            output_text = gr.Textbox(label="Counting Object")
    
    # Tombol untuk memproses input
    detect_button = gr.Button("Detect")
    
    # Hubungkan tombol dengan fungsi deteksi
    detect_button.click(
        fn=detect_combined, 
        inputs=input_image, 
        outputs=[output_image, output_text]
    )

iface.launch()