muhammadsalmanalfaridzi's picture
Update app.py
bd977a3 verified
raw
history blame
8.53 kB
import os
import numpy as np
import tempfile
import requests
import cv2
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import subprocess
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# countgd Model Configuration
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
COUNTGD_MODEL_URL = "https://api.landing.ai/v1/tools/countgd-object-detection" # Replace with the correct API endpoint
# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
# Hitung per class Nestlé
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ========== [2] countgd: Deteksi Produk dengan countgd Model ==========
# Make a request to the countgd model API (adjust parameters accordingly)
with open(temp_path, 'rb') as img_file:
response = requests.post(
COUNTGD_MODEL_URL,
headers={"Authorization": f"Bearer {COUNTGD_API_KEY}"},
files={"image": img_file},
data={"prompts": ["water bottle", "beverage can"]}
)
# Handle the response from the countgd model
if response.status_code == 200:
countgd_pred = response.json()['detections']
else:
return temp_path, f"Error calling countgd API: {response.text}"
# Filter & Hitung Kompetitor
competitor_class_count = {}
competitor_boxes = []
for obj in countgd_pred:
# Filter and process the detections
class_name = obj['label']
if class_name.lower() in ['water bottle', 'beverage can']: # Modify this as needed
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": obj['bbox'],
"confidence": obj['score']
})
total_competitor = sum(competitor_class_count.values())
# ========== [3] Format Output ==========
result_text = "Product Nestle\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
# Unclassified Products (from countgd model)
if competitor_class_count:
result_text += f"Total Unclassified Products: {total_competitor}\n"
else:
result_text += "No Unclassified Products detected\n"
# ========== [4] Visualisasi ==========
img = cv2.imread(temp_path)
# Nestlé (Hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0,255,0), 2)
# Kompetitor (Merah) with countgd detections
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
os.remove(temp_path)
# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
try:
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
return output_path
except subprocess.CalledProcessError as e:
return None, f"Error converting video: {e}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
frame_count = 0
try:
# Convert video to MP4 if necessary
if not video_path.endswith(".mp4"):
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
if not video_path:
return None, f"Video conversion error: {err}"
# Read video and process frames
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
# VideoWriter for output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
# Process predictions for the current frame using countgd model (same as in image detection)
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# Get predictions from countgd (adjust accordingly for video frames)
response = requests.post(
COUNTGD_MODEL_URL,
headers={"Authorization": f"Bearer {COUNTGD_API_KEY}"},
files={"image": open(frame_path, 'rb')},
data={"prompts": ["water bottle", "beverage can"]}
)
# Process the response (similarly to what was done for image detection)
if response.status_code == 200:
countgd_pred = response.json()['detections']
else:
continue
# Drawing detections on frames
for obj in countgd_pred:
x1, y1, x2, y2 = obj['bbox']
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(frame, f"{obj['label']} {obj['score']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2)
# Write processed frame to output video
output_video.write(frame)
frame_count += 1
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
iface.launch()