File size: 8,531 Bytes
49fea9e
bd977a3
 
98fb533
49fea9e
bd977a3
 
 
98fb533
49fea9e
bd977a3
49fea9e
 
 
 
 
 
 
 
bd977a3
 
 
49fea9e
bd977a3
49fea9e
 
 
 
bd977a3
49fea9e
 
 
 
 
 
bd977a3
98fb533
 
bd977a3
49fea9e
 
bd977a3
49fea9e
 
 
1f8598c
49fea9e
1f8598c
bd977a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fb533
bd977a3
49fea9e
 
bd977a3
 
 
 
1f8598c
 
 
bd977a3
 
1f8598c
 
49fea9e
1f8598c
bd977a3
 
49fea9e
 
bd977a3
 
 
49fea9e
98fb533
49fea9e
98fb533
1f8598c
bd977a3
98fb533
bd977a3
 
 
49fea9e
bd977a3
 
 
1f8598c
bd977a3
49fea9e
98fb533
 
bd977a3
 
 
49fea9e
 
 
 
1f8598c
49fea9e
 
 
 
 
bd977a3
 
98fb533
 
 
 
 
 
 
1f8598c
98fb533
 
 
 
1f8598c
bd977a3
98fb533
 
 
 
 
bd977a3
98fb533
 
 
 
 
 
bd977a3
1f8598c
98fb533
 
 
 
1f8598c
 
98fb533
bd977a3
98fb533
1f8598c
98fb533
bd977a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fb533
 
 
 
 
bd977a3
98fb533
 
1f8598c
98fb533
1f8598c
bd977a3
49fea9e
98fb533
bd977a3
49fea9e
 
 
 
98fb533
 
 
bd977a3
1f8598c
 
 
98fb533
 
bd977a3
98fb533
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import numpy as np
import tempfile
import requests
import cv2
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import subprocess

# ========== Konfigurasi ========== 
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# countgd Model Configuration
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
COUNTGD_MODEL_URL = "https://api.landing.ai/v1/tools/countgd-object-detection"  # Replace with the correct API endpoint

# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

# ========== Fungsi Deteksi Kombinasi ========== 
def detect_combined(image):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name

    try:
        # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ========== 
        yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()

        # Hitung per class Nestlé
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))

        total_nestle = sum(nestle_class_count.values())

        # ========== [2] countgd: Deteksi Produk dengan countgd Model ========== 
        # Make a request to the countgd model API (adjust parameters accordingly)
        with open(temp_path, 'rb') as img_file:
            response = requests.post(
                COUNTGD_MODEL_URL,
                headers={"Authorization": f"Bearer {COUNTGD_API_KEY}"},
                files={"image": img_file},
                data={"prompts": ["water bottle", "beverage can"]}
            )

        # Handle the response from the countgd model
        if response.status_code == 200:
            countgd_pred = response.json()['detections']
        else:
            return temp_path, f"Error calling countgd API: {response.text}"

        # Filter & Hitung Kompetitor
        competitor_class_count = {}
        competitor_boxes = []
        for obj in countgd_pred:
            # Filter and process the detections
            class_name = obj['label']
            if class_name.lower() in ['water bottle', 'beverage can']:  # Modify this as needed
                competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                competitor_boxes.append({
                    "class": class_name,
                    "box": obj['bbox'],
                    "confidence": obj['score']
                })

        total_competitor = sum(competitor_class_count.values())

        # ========== [3] Format Output ========== 
        result_text = "Product Nestle\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"

        # Unclassified Products (from countgd model)
        if competitor_class_count:
            result_text += f"Total Unclassified Products: {total_competitor}\n"
        else:
            result_text += "No Unclassified Products detected\n"

        # ========== [4] Visualisasi ========== 
        img = cv2.imread(temp_path)

        # Nestlé (Hijau)
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
            cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0,255,0), 2)

        # Kompetitor (Merah) with countgd detections
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}",
                        (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2)
            
        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)

        return output_path, result_text

    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    finally:
        os.remove(temp_path)

# ========== Fungsi untuk Deteksi Video ========== 

def convert_video_to_mp4(input_path, output_path):
    try:
        subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
        return output_path
    except subprocess.CalledProcessError as e:
        return None, f"Error converting video: {e}"

def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()
    frame_count = 0

    try:
        # Convert video to MP4 if necessary
        if not video_path.endswith(".mp4"):
            video_path, err = convert_video_to_mp4(video_path, temp_output_path)
            if not video_path:
                return None, f"Video conversion error: {err}"

        # Read video and process frames
        video = cv2.VideoCapture(video_path)
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_size = (frame_width, frame_height)

        # VideoWriter for output video
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)

        while True:
            ret, frame = video.read()
            if not ret:
                break

            # Process predictions for the current frame using countgd model (same as in image detection)
            frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
            cv2.imwrite(frame_path, frame)

            # Get predictions from countgd (adjust accordingly for video frames)
            response = requests.post(
                COUNTGD_MODEL_URL,
                headers={"Authorization": f"Bearer {COUNTGD_API_KEY}"},
                files={"image": open(frame_path, 'rb')},
                data={"prompts": ["water bottle", "beverage can"]}
            )

            # Process the response (similarly to what was done for image detection)
            if response.status_code == 200:
                countgd_pred = response.json()['detections']
            else:
                continue

            # Drawing detections on frames
            for obj in countgd_pred:
                x1, y1, x2, y2 = obj['bbox']
                cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
                cv2.putText(frame, f"{obj['label']} {obj['score']:.2f}", 
                            (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2)

            # Write processed frame to output video
            output_video.write(frame)
            frame_count += 1

        video.release()
        output_video.release()

        return temp_output_path

    except Exception as e:
        return None, f"An error occurred: {e}"

# ========== Gradio Interface ========== 
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            detect_image_button = gr.Button("Detect Image")
            output_image = gr.Image(label="Detect Object")
            output_text = gr.Textbox(label="Counting Object")
            detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])

        with gr.Column():
            input_video = gr.Video(label="Input Video")
            detect_video_button = gr.Button("Detect Video")
            output_video = gr.Video(label="Output Video")
            detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])

iface.launch()