File size: 8,531 Bytes
49fea9e bd977a3 98fb533 49fea9e bd977a3 98fb533 49fea9e bd977a3 49fea9e bd977a3 49fea9e bd977a3 49fea9e bd977a3 49fea9e bd977a3 98fb533 bd977a3 49fea9e bd977a3 49fea9e 1f8598c 49fea9e 1f8598c bd977a3 98fb533 bd977a3 49fea9e bd977a3 1f8598c bd977a3 1f8598c 49fea9e 1f8598c bd977a3 49fea9e bd977a3 49fea9e 98fb533 49fea9e 98fb533 1f8598c bd977a3 98fb533 bd977a3 49fea9e bd977a3 1f8598c bd977a3 49fea9e 98fb533 bd977a3 49fea9e 1f8598c 49fea9e bd977a3 98fb533 1f8598c 98fb533 1f8598c bd977a3 98fb533 bd977a3 98fb533 bd977a3 1f8598c 98fb533 1f8598c 98fb533 bd977a3 98fb533 1f8598c 98fb533 bd977a3 98fb533 bd977a3 98fb533 1f8598c 98fb533 1f8598c bd977a3 49fea9e 98fb533 bd977a3 49fea9e 98fb533 bd977a3 1f8598c 98fb533 bd977a3 98fb533 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import numpy as np
import tempfile
import requests
import cv2
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import subprocess
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# countgd Model Configuration
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
COUNTGD_MODEL_URL = "https://api.landing.ai/v1/tools/countgd-object-detection" # Replace with the correct API endpoint
# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
# Hitung per class Nestlé
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ========== [2] countgd: Deteksi Produk dengan countgd Model ==========
# Make a request to the countgd model API (adjust parameters accordingly)
with open(temp_path, 'rb') as img_file:
response = requests.post(
COUNTGD_MODEL_URL,
headers={"Authorization": f"Bearer {COUNTGD_API_KEY}"},
files={"image": img_file},
data={"prompts": ["water bottle", "beverage can"]}
)
# Handle the response from the countgd model
if response.status_code == 200:
countgd_pred = response.json()['detections']
else:
return temp_path, f"Error calling countgd API: {response.text}"
# Filter & Hitung Kompetitor
competitor_class_count = {}
competitor_boxes = []
for obj in countgd_pred:
# Filter and process the detections
class_name = obj['label']
if class_name.lower() in ['water bottle', 'beverage can']: # Modify this as needed
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": obj['bbox'],
"confidence": obj['score']
})
total_competitor = sum(competitor_class_count.values())
# ========== [3] Format Output ==========
result_text = "Product Nestle\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
# Unclassified Products (from countgd model)
if competitor_class_count:
result_text += f"Total Unclassified Products: {total_competitor}\n"
else:
result_text += "No Unclassified Products detected\n"
# ========== [4] Visualisasi ==========
img = cv2.imread(temp_path)
# Nestlé (Hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0,255,0), 2)
# Kompetitor (Merah) with countgd detections
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
os.remove(temp_path)
# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
try:
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
return output_path
except subprocess.CalledProcessError as e:
return None, f"Error converting video: {e}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
frame_count = 0
try:
# Convert video to MP4 if necessary
if not video_path.endswith(".mp4"):
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
if not video_path:
return None, f"Video conversion error: {err}"
# Read video and process frames
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
# VideoWriter for output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
# Process predictions for the current frame using countgd model (same as in image detection)
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# Get predictions from countgd (adjust accordingly for video frames)
response = requests.post(
COUNTGD_MODEL_URL,
headers={"Authorization": f"Bearer {COUNTGD_API_KEY}"},
files={"image": open(frame_path, 'rb')},
data={"prompts": ["water bottle", "beverage can"]}
)
# Process the response (similarly to what was done for image detection)
if response.status_code == 200:
countgd_pred = response.json()['detections']
else:
continue
# Drawing detections on frames
for obj in countgd_pred:
x1, y1, x2, y2 = obj['bbox']
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(frame, f"{obj['label']} {obj['score']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2)
# Write processed frame to output video
output_video.write(frame)
frame_count += 1
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
iface.launch()
|