Spaces:
Build error
Build error
import gradio as gr | |
from roboflow import Roboflow | |
import tempfile | |
import os | |
from sahi.slicing import slice_image | |
from sahi.postprocess import postprocess_predictions | |
# Inisialisasi Roboflow (for model path) | |
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU") | |
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base") | |
model = project.version(16).model | |
# Fungsi untuk deteksi objek menggunakan SAHI dan Roboflow Model | |
def detect_objects(image): | |
# Menyimpan gambar sementara | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
image.save(temp_file, format="JPEG") | |
temp_file_path = temp_file.name | |
# Slice gambar menjadi potongan-potongan kecil | |
slice_image_result = slice_image( | |
image=temp_file_path, | |
output_file_name="sliced_image", | |
output_dir="/tmp/sliced/", | |
slice_height=256, | |
slice_width=256, | |
overlap_height_ratio=0.1, | |
overlap_width_ratio=0.1 | |
) | |
# Mendapatkan path-potongan gambar | |
sliced_image_paths = slice_image_result['sliced_image_paths'] | |
# Menyimpan semua prediksi untuk setiap potongan gambar | |
all_predictions = [] | |
# Prediksi pada setiap potongan gambar | |
for sliced_image_path in sliced_image_paths: | |
predictions = model.predict(image_path=sliced_image_path).json() | |
all_predictions.extend(predictions['predictions']) | |
# Postprocess dan gabungkan hasil prediksi | |
postprocessed_predictions = postprocess_predictions( | |
predictions=all_predictions, | |
postprocess_type='NMS', | |
iou_threshold=0.5 | |
) | |
# Annotate gambar dengan hasil prediksi | |
annotated_image = model.annotate_image_with_predictions(temp_file_path, postprocessed_predictions) | |
# Simpan gambar hasil annotasi | |
output_image_path = "/tmp/prediction.jpg" | |
annotated_image.save(output_image_path) | |
# Menghitung jumlah objek per kelas | |
class_count = {} | |
for detection in postprocessed_predictions: | |
class_name = detection['class'] | |
if class_name in class_count: | |
class_count[class_name] += 1 | |
else: | |
class_count[class_name] = 1 | |
# Hasil perhitungan objek | |
result_text = "Jumlah objek per kelas:\n" | |
for class_name, count in class_count.items(): | |
result_text += f"{class_name}: {count} objek\n" | |
# Hapus file sementara | |
os.remove(temp_file_path) | |
return output_image_path, result_text | |
# Membuat antarmuka Gradio | |
iface = gr.Interface( | |
fn=detect_objects, # Fungsi yang dipanggil saat gambar diupload | |
inputs=gr.Image(type="pil"), # Input berupa gambar | |
outputs=[gr.Image(), gr.Textbox()], # Output gambar dan teks | |
live=True # Menampilkan hasil secara langsung | |
) | |
# Menjalankan antarmuka | |
iface.launch() | |