File size: 2,843 Bytes
fcf6ad5 3e8a5f8 fcf6ad5 3e8a5f8 fcf6ad5 8f29306 fcf6ad5 8eaadb5 fcf6ad5 3e8a5f8 fcf6ad5 3e8a5f8 6b64c3f 2eddcfe 6b64c3f 3e8a5f8 2eddcfe 3e8a5f8 6b64c3f 3e8a5f8 6b64c3f 3e8a5f8 6b64c3f fcf6ad5 3e8a5f8 8eaadb5 fcf6ad5 6b64c3f fcf6ad5 6b64c3f 3e8a5f8 fcf6ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import gradio as gr
from roboflow import Roboflow
import tempfile
import os
from sahi.slicing import slice_image
from sahi.postprocess import postprocess_predictions
# Inisialisasi Roboflow (for model path)
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
model = project.version(16).model
# Fungsi untuk deteksi objek menggunakan SAHI dan Roboflow Model
def detect_objects(image):
# Menyimpan gambar sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_file_path = temp_file.name
# Slice gambar menjadi potongan-potongan kecil
slice_image_result = slice_image(
image=temp_file_path,
output_file_name="sliced_image",
output_dir="/tmp/sliced/",
slice_height=256,
slice_width=256,
overlap_height_ratio=0.1,
overlap_width_ratio=0.1
)
# Mendapatkan path-potongan gambar
sliced_image_paths = slice_image_result['sliced_image_paths']
# Menyimpan semua prediksi untuk setiap potongan gambar
all_predictions = []
# Prediksi pada setiap potongan gambar
for sliced_image_path in sliced_image_paths:
predictions = model.predict(image_path=sliced_image_path).json()
all_predictions.extend(predictions['predictions'])
# Postprocess dan gabungkan hasil prediksi
postprocessed_predictions = postprocess_predictions(
predictions=all_predictions,
postprocess_type='NMS',
iou_threshold=0.5
)
# Annotate gambar dengan hasil prediksi
annotated_image = model.annotate_image_with_predictions(temp_file_path, postprocessed_predictions)
# Simpan gambar hasil annotasi
output_image_path = "/tmp/prediction.jpg"
annotated_image.save(output_image_path)
# Menghitung jumlah objek per kelas
class_count = {}
for detection in postprocessed_predictions:
class_name = detection['class']
if class_name in class_count:
class_count[class_name] += 1
else:
class_count[class_name] = 1
# Hasil perhitungan objek
result_text = "Jumlah objek per kelas:\n"
for class_name, count in class_count.items():
result_text += f"{class_name}: {count} objek\n"
# Hapus file sementara
os.remove(temp_file_path)
return output_image_path, result_text
# Membuat antarmuka Gradio
iface = gr.Interface(
fn=detect_objects, # Fungsi yang dipanggil saat gambar diupload
inputs=gr.Image(type="pil"), # Input berupa gambar
outputs=[gr.Image(), gr.Textbox()], # Output gambar dan teks
live=True # Menampilkan hasil secara langsung
)
# Menjalankan antarmuka
iface.launch()
|