muhammadsalmanalfaridzi commited on
Commit
8eaadb5
·
verified ·
1 Parent(s): c0b12f2

change model

Browse files
Files changed (1) hide show
  1. app.py +5 -14
app.py CHANGED
@@ -11,7 +11,7 @@ rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
11
  project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
12
  model = project.version(16).model
13
 
14
- # Fungsi untuk deteksi objek menggunakan SAHI
15
  def detect_objects(image):
16
  # Menyimpan gambar sementara
17
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
@@ -29,21 +29,12 @@ def detect_objects(image):
29
  overlap_width_ratio=0.1
30
  )
31
 
32
- # Jalankan prediksi pada setiap potongan gambar
33
- predictions = get_sliced_prediction(
34
- image_path=temp_file_path,
35
- model_path="path_to_your_model",
36
- model_type="yolov8", # Adjust based on your model
37
- slice_height=256,
38
- slice_width=256,
39
- overlap_height_ratio=0.1,
40
- overlap_width_ratio=0.1,
41
- model_confidence_threshold=0.25
42
- )
43
 
44
  # Postprocess dan gabungkan hasil prediksi
45
  postprocessed_predictions = postprocess_predictions(
46
- predictions=predictions,
47
  postprocess_type='NMS',
48
  iou_threshold=0.5
49
  )
@@ -58,7 +49,7 @@ def detect_objects(image):
58
  # Menghitung jumlah objek per kelas
59
  class_count = {}
60
  for detection in postprocessed_predictions:
61
- class_name = detection.class_name
62
  if class_name in class_count:
63
  class_count[class_name] += 1
64
  else:
 
11
  project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
12
  model = project.version(16).model
13
 
14
+ # Fungsi untuk deteksi objek menggunakan SAHI dan Roboflow Model
15
  def detect_objects(image):
16
  # Menyimpan gambar sementara
17
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
 
29
  overlap_width_ratio=0.1
30
  )
31
 
32
+ # Prediksi menggunakan model Roboflow
33
+ predictions = model.predict(image_path=temp_file_path).json()
 
 
 
 
 
 
 
 
 
34
 
35
  # Postprocess dan gabungkan hasil prediksi
36
  postprocessed_predictions = postprocess_predictions(
37
+ predictions=predictions['predictions'],
38
  postprocess_type='NMS',
39
  iou_threshold=0.5
40
  )
 
49
  # Menghitung jumlah objek per kelas
50
  class_count = {}
51
  for detection in postprocessed_predictions:
52
+ class_name = detection['class']
53
  if class_name in class_count:
54
  class_count[class_name] += 1
55
  else: