File size: 10,699 Bytes
bd977a3 bf1fd9f 0f3d01e bf1fd9f b60852c bf1fd9f f280e18 b60852c bf1fd9f d38d4bd bf1fd9f d38d4bd b60852c d38d4bd f280e18 d38d4bd b60852c bf1fd9f d38d4bd bf1fd9f f280e18 bf1fd9f f280e18 bf1fd9f d38d4bd bf1fd9f f280e18 bf1fd9f f280e18 d38d4bd 56ff081 f280e18 b60852c 56ff081 f280e18 bf1fd9f f280e18 b60852c 56ff081 bf1fd9f 56ff081 b60852c f280e18 d38d4bd b60852c f280e18 d38d4bd bf1fd9f d38d4bd bf1fd9f b60852c d38d4bd b60852c f280e18 bf1fd9f f280e18 bf1fd9f f280e18 bf1fd9f b60852c bf1fd9f d38d4bd bf1fd9f d38d4bd bf1fd9f d38d4bd bf1fd9f f280e18 bf1fd9f f280e18 bf1fd9f f280e18 bf1fd9f f280e18 bf1fd9f f280e18 bf1fd9f b60852c bf1fd9f f280e18 bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f 0f3d01e bf1fd9f b60852c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess
# ========== Load Environment Variables ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# CountGD Config (Replace DINO-X)
# Pastikan Anda sudah set COUNTGD_API_KEY di .env
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
# Inisialisasi YOLO Model dari Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi untuk Mengecek Overlap ==========
def is_overlap(box1, boxes2, threshold=0.3):
"""
Mengecek apakah box1 (format: (x_min, y_min, x_max, y_max)) overlap dengan salah satu box di boxes2.
boxes2 adalah list bounding box YOLO dengan format (x_center, y_center, width, height).
Mengembalikan True jika rasio overlap melebihi threshold.
"""
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x_center, y_center, w2, h2 = b2
x2_min = x_center - w2 / 2
x2_max = x_center + w2 / 2
y2_min = y_center - h2 / 2
y2_max = y_center + h2 / 2
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if dx > 0 and dy > 0:
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_box1 > 0 and (area_overlap / area_box1) > threshold:
return True
return False
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
# Simpan image ke file sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ===== YOLO Detection (Produk Nestlé) =====
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
nestle_class_count = {}
nestle_boxes = [] # Menyimpan bounding box YOLO (format: x_center, y_center, width, height)
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ===== CountGD Detection (Produk Kompetitor) =====
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
competitor_class_count = {}
competitor_boxes = [] # Menyimpan bounding box CountGD (format: x_min, y_min, x_max, y_max)
# Daftar prompt yang akan digunakan
COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
for prompt in COUNTGD_PROMPTS:
# Untuk setiap prompt, buka file gambar dan kirim request
with open(temp_path, "rb") as f:
files = {"image": f}
data = {"prompts": [prompt], "model": "countgd"}
response = requests.post(url, files=files, data=data, headers=headers)
result = response.json()
# Cek apakah API mengembalikan data
if 'data' in result and result['data']:
detections = result['data'][0]
for obj in detections:
if 'bounding_box' in obj:
x1, y1, x2, y2 = obj['bounding_box']
countgd_box = (x1, y1, x2, y2)
# Hanya tambahkan deteksi jika tidak overlap signifikan dengan YOLO
if not is_overlap(countgd_box, nestle_boxes, threshold=0.3):
# Gunakan label dari respons jika ada, jika tidak gunakan prompt sebagai default
label = obj.get('label', prompt)
competitor_class_count[label] = competitor_class_count.get(label, 0) + 1
competitor_boxes.append(countgd_box)
total_competitor = sum(competitor_class_count.values())
# ===== Format Output Text =====
result_text = "Product Nestlé\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
if total_competitor:
result_text += "Produk Kompetitor (CountGD):\n"
for label, count in competitor_class_count.items():
result_text += f"{label}: {count}\n"
result_text += f"\nTotal Produk Kompetitor: {total_competitor}\n"
else:
result_text += "No Unclassified Products detected\n"
# ===== Visualisasi =====
img = cv2.imread(temp_path)
# Gambar bounding box YOLO (hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
pt1 = (int(x - w/2), int(y - h/2))
pt2 = (int(x + w/2), int(y + h/2))
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
# Gambar bounding box CountGD (merah)
for box in competitor_boxes:
x1, y1, x2, y2 = box
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
try:
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
return output_path
except subprocess.CalledProcessError as e:
return None, f"Error converting video: {e}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
frame_count = 0
previous_detections = {} # Untuk menyimpan deteksi frame sebelumnya
try:
# Konversi video ke MP4 jika perlu
if not video_path.endswith(".mp4"):
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
if not video_path:
return None, f"Video conversion error: {err}"
# Buka video untuk diproses
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
# Setup VideoWriter untuk output
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
# Simpan frame untuk deteksi YOLO
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# YOLO detection pada frame
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
# Gambar deteksi YOLO pada frame
current_detections = {}
for prediction in predictions['predictions']:
class_name = prediction['class']
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
object_id = f"{class_name}_{x}_{y}_{w}_{h}"
if object_id not in current_detections:
current_detections[object_id] = class_name
pt1 = (int(x - w/2), int(y - h/2))
pt2 = (int(x + w/2), int(y + h/2))
cv2.rectangle(frame, pt1, pt2, (0,255,0), 2)
cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
# Hitung dan tampilkan jumlah deteksi pada frame
object_counts = {}
for detection_id in current_detections:
cls = current_detections[detection_id]
object_counts[cls] = object_counts.get(cls, 0) + 1
count_text = ""
total_product_count = 0
for cls, count in object_counts.items():
count_text += f"{cls}: {count}\n"
total_product_count += count
count_text += f"\nTotal Product: {total_product_count}"
y_offset = 20
for line in count_text.split("\n"):
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)
y_offset += 30
output_video.write(frame)
frame_count += 1
previous_detections = current_detections
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
iface.launch()
|