Update app.py
Browse files
app.py
CHANGED
@@ -17,21 +17,24 @@ workspace = os.getenv("ROBOFLOW_WORKSPACE")
|
|
17 |
project_name = os.getenv("ROBOFLOW_PROJECT")
|
18 |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
19 |
|
20 |
-
# CountGD Config (
|
21 |
-
#
|
22 |
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
|
23 |
|
24 |
-
# Inisialisasi YOLO Model
|
25 |
rf = Roboflow(api_key=rf_api_key)
|
26 |
project = rf.workspace(workspace).project(project_name)
|
27 |
yolo_model = project.version(model_version).model
|
28 |
|
29 |
-
#
|
|
|
|
|
|
|
30 |
def is_overlap(box1, boxes2, threshold=0.3):
|
31 |
"""
|
32 |
-
|
33 |
-
boxes2
|
34 |
-
|
35 |
"""
|
36 |
x1_min, y1_min, x1_max, y1_max = box1
|
37 |
for b2 in boxes2:
|
@@ -41,7 +44,6 @@ def is_overlap(box1, boxes2, threshold=0.3):
|
|
41 |
y2_min = y_center - h2 / 2
|
42 |
y2_max = y_center + h2 / 2
|
43 |
|
44 |
-
# Calculate overlap area
|
45 |
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
|
46 |
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
|
47 |
if dx > 0 and dy > 0:
|
@@ -51,44 +53,45 @@ def is_overlap(box1, boxes2, threshold=0.3):
|
|
51 |
return True
|
52 |
return False
|
53 |
|
54 |
-
# ==========
|
55 |
def detect_combined(image):
|
56 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
57 |
image.save(temp_file, format="JPEG")
|
58 |
temp_path = temp_file.name
|
59 |
|
60 |
try:
|
61 |
-
# ===== YOLO Detection (Nestlé
|
62 |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
63 |
nestle_class_count = {}
|
64 |
-
nestle_boxes = [] #
|
65 |
for pred in yolo_pred['predictions']:
|
66 |
class_name = pred['class']
|
67 |
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
|
68 |
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
|
69 |
total_nestle = sum(nestle_class_count.values())
|
70 |
|
71 |
-
# ===== CountGD Detection (
|
72 |
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
|
73 |
files = {"image": open(temp_path, "rb")}
|
74 |
-
|
|
|
75 |
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
|
76 |
response = requests.post(url, files=files, data=data, headers=headers)
|
77 |
result = response.json()
|
78 |
|
79 |
competitor_class_count = {}
|
80 |
-
competitor_boxes = [] #
|
81 |
if 'data' in result:
|
|
|
82 |
for obj in result['data'][0]:
|
83 |
if 'bounding_box' in obj:
|
84 |
-
# CountGD returns bounding_box as [x_min, y_min, x_max, y_max]
|
85 |
x1, y1, x2, y2 = obj['bounding_box']
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
competitor_class_count[
|
91 |
-
competitor_boxes.append(
|
92 |
total_competitor = sum(competitor_class_count.values())
|
93 |
|
94 |
# ===== Format Output Text =====
|
@@ -97,13 +100,16 @@ def detect_combined(image):
|
|
97 |
result_text += f"{class_name}: {count}\n"
|
98 |
result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
|
99 |
if total_competitor:
|
100 |
-
result_text +=
|
|
|
|
|
|
|
101 |
else:
|
102 |
result_text += "No Unclassified Products detected\n"
|
103 |
|
104 |
-
# =====
|
105 |
img = cv2.imread(temp_path)
|
106 |
-
#
|
107 |
for pred in yolo_pred['predictions']:
|
108 |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
109 |
pt1 = (int(x - w/2), int(y - h/2))
|
@@ -111,10 +117,11 @@ def detect_combined(image):
|
|
111 |
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
|
112 |
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
|
113 |
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
|
114 |
-
#
|
115 |
for box in competitor_boxes:
|
116 |
x1, y1, x2, y2 = box
|
117 |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
|
|
118 |
cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
|
119 |
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
|
120 |
|
@@ -129,7 +136,7 @@ def detect_combined(image):
|
|
129 |
if os.path.exists(temp_path):
|
130 |
os.remove(temp_path)
|
131 |
|
132 |
-
# ==========
|
133 |
def convert_video_to_mp4(input_path, output_path):
|
134 |
try:
|
135 |
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
|
@@ -141,23 +148,21 @@ def detect_objects_in_video(video_path):
|
|
141 |
temp_output_path = "/tmp/output_video.mp4"
|
142 |
temp_frames_dir = tempfile.mkdtemp()
|
143 |
frame_count = 0
|
144 |
-
previous_detections = {} #
|
145 |
|
146 |
try:
|
147 |
-
#
|
148 |
if not video_path.endswith(".mp4"):
|
149 |
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
|
150 |
if not video_path:
|
151 |
return None, f"Video conversion error: {err}"
|
152 |
|
153 |
-
# Open video for processing
|
154 |
video = cv2.VideoCapture(video_path)
|
155 |
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
|
156 |
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
157 |
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
158 |
frame_size = (frame_width, frame_height)
|
159 |
|
160 |
-
# Setup VideoWriter for output
|
161 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
162 |
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
|
163 |
|
@@ -166,14 +171,11 @@ def detect_objects_in_video(video_path):
|
|
166 |
if not ret:
|
167 |
break
|
168 |
|
169 |
-
# Save frame for YOLO detection
|
170 |
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
|
171 |
cv2.imwrite(frame_path, frame)
|
172 |
|
173 |
-
# YOLO detection on the frame
|
174 |
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
|
175 |
|
176 |
-
# Draw YOLO detections on the frame
|
177 |
current_detections = {}
|
178 |
for prediction in predictions['predictions']:
|
179 |
class_name = prediction['class']
|
@@ -187,7 +189,6 @@ def detect_objects_in_video(video_path):
|
|
187 |
cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
|
188 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
189 |
|
190 |
-
# Count objects and overlay text
|
191 |
object_counts = {}
|
192 |
for detection_id in current_detections:
|
193 |
cls = current_detections[detection_id]
|
|
|
17 |
project_name = os.getenv("ROBOFLOW_PROJECT")
|
18 |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
19 |
|
20 |
+
# CountGD Config (menggantikan DINO-X)
|
21 |
+
# Pastikan API key CountGD telah di-set di .env dengan key COUNTGD_API_KEY
|
22 |
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
|
23 |
|
24 |
+
# Inisialisasi YOLO Model dari Roboflow
|
25 |
rf = Roboflow(api_key=rf_api_key)
|
26 |
project = rf.workspace(workspace).project(project_name)
|
27 |
yolo_model = project.version(model_version).model
|
28 |
|
29 |
+
# List prompt untuk CountGD (misal: cans, bottle, mixed box)
|
30 |
+
COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]
|
31 |
+
|
32 |
+
# ========== Fungsi untuk Mengecek Overlap ==========
|
33 |
def is_overlap(box1, boxes2, threshold=0.3):
|
34 |
"""
|
35 |
+
Mengecek apakah box1 (format: (x_min, y_min, x_max, y_max)) overlap dengan salah satu box di boxes2.
|
36 |
+
boxes2 adalah list bounding box dari YOLO dengan format (x_center, y_center, width, height).
|
37 |
+
Mengembalikan True jika rasio overlap melebihi threshold.
|
38 |
"""
|
39 |
x1_min, y1_min, x1_max, y1_max = box1
|
40 |
for b2 in boxes2:
|
|
|
44 |
y2_min = y_center - h2 / 2
|
45 |
y2_max = y_center + h2 / 2
|
46 |
|
|
|
47 |
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
|
48 |
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
|
49 |
if dx > 0 and dy > 0:
|
|
|
53 |
return True
|
54 |
return False
|
55 |
|
56 |
+
# ========== Fungsi Deteksi Kombinasi ==========
|
57 |
def detect_combined(image):
|
58 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
59 |
image.save(temp_file, format="JPEG")
|
60 |
temp_path = temp_file.name
|
61 |
|
62 |
try:
|
63 |
+
# ===== YOLO Detection (Produk Nestlé) =====
|
64 |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
65 |
nestle_class_count = {}
|
66 |
+
nestle_boxes = [] # Menyimpan bounding box YOLO dengan format (x_center, y_center, width, height)
|
67 |
for pred in yolo_pred['predictions']:
|
68 |
class_name = pred['class']
|
69 |
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
|
70 |
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
|
71 |
total_nestle = sum(nestle_class_count.values())
|
72 |
|
73 |
+
# ===== CountGD Detection (Produk Kompetitor) =====
|
74 |
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
|
75 |
files = {"image": open(temp_path, "rb")}
|
76 |
+
# Menggunakan lebih dari satu prompt
|
77 |
+
data = {"prompts": COUNTGD_PROMPTS, "model": "countgd"}
|
78 |
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
|
79 |
response = requests.post(url, files=files, data=data, headers=headers)
|
80 |
result = response.json()
|
81 |
|
82 |
competitor_class_count = {}
|
83 |
+
competitor_boxes = [] # Menyimpan bounding box CountGD dengan format (x_min, y_min, x_max, y_max)
|
84 |
if 'data' in result:
|
85 |
+
# Asumsi API mengembalikan list deteksi pada data[0]
|
86 |
for obj in result['data'][0]:
|
87 |
if 'bounding_box' in obj:
|
|
|
88 |
x1, y1, x2, y2 = obj['bounding_box']
|
89 |
+
# Mengambil label jika tersedia, default 'unclassified'
|
90 |
+
label = obj.get('label', 'unclassified')
|
91 |
+
# Hanya tambahkan deteksi jika tidak overlap dengan deteksi YOLO
|
92 |
+
if not is_overlap((x1, y1, x2, y2), nestle_boxes, threshold=0.3):
|
93 |
+
competitor_class_count[label] = competitor_class_count.get(label, 0) + 1
|
94 |
+
competitor_boxes.append((x1, y1, x2, y2))
|
95 |
total_competitor = sum(competitor_class_count.values())
|
96 |
|
97 |
# ===== Format Output Text =====
|
|
|
100 |
result_text += f"{class_name}: {count}\n"
|
101 |
result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
|
102 |
if total_competitor:
|
103 |
+
result_text += "Produk Kompetitor (CountGD) :\n"
|
104 |
+
for label, count in competitor_class_count.items():
|
105 |
+
result_text += f"{label}: {count}\n"
|
106 |
+
result_text += f"\nTotal Produk Kompetitor: {total_competitor}\n"
|
107 |
else:
|
108 |
result_text += "No Unclassified Products detected\n"
|
109 |
|
110 |
+
# ===== Visualisasi =====
|
111 |
img = cv2.imread(temp_path)
|
112 |
+
# Gambar bounding box YOLO (hijau)
|
113 |
for pred in yolo_pred['predictions']:
|
114 |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
115 |
pt1 = (int(x - w/2), int(y - h/2))
|
|
|
117 |
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
|
118 |
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
|
119 |
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
|
120 |
+
# Gambar bounding box CountGD (merah)
|
121 |
for box in competitor_boxes:
|
122 |
x1, y1, x2, y2 = box
|
123 |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
124 |
+
# Tampilkan label hasil CountGD
|
125 |
cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
|
126 |
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
|
127 |
|
|
|
136 |
if os.path.exists(temp_path):
|
137 |
os.remove(temp_path)
|
138 |
|
139 |
+
# ========== Fungsi untuk Deteksi Video ==========
|
140 |
def convert_video_to_mp4(input_path, output_path):
|
141 |
try:
|
142 |
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
|
|
|
148 |
temp_output_path = "/tmp/output_video.mp4"
|
149 |
temp_frames_dir = tempfile.mkdtemp()
|
150 |
frame_count = 0
|
151 |
+
previous_detections = {} # Untuk menyimpan deteksi frame sebelumnya
|
152 |
|
153 |
try:
|
154 |
+
# Konversi video ke MP4 jika perlu
|
155 |
if not video_path.endswith(".mp4"):
|
156 |
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
|
157 |
if not video_path:
|
158 |
return None, f"Video conversion error: {err}"
|
159 |
|
|
|
160 |
video = cv2.VideoCapture(video_path)
|
161 |
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
|
162 |
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
163 |
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
164 |
frame_size = (frame_width, frame_height)
|
165 |
|
|
|
166 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
167 |
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
|
168 |
|
|
|
171 |
if not ret:
|
172 |
break
|
173 |
|
|
|
174 |
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
|
175 |
cv2.imwrite(frame_path, frame)
|
176 |
|
|
|
177 |
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
|
178 |
|
|
|
179 |
current_detections = {}
|
180 |
for prediction in predictions['predictions']:
|
181 |
class_name = prediction['class']
|
|
|
189 |
cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
|
190 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
191 |
|
|
|
192 |
object_counts = {}
|
193 |
for detection_id in current_detections:
|
194 |
cls = current_detections[detection_id]
|