File size: 10,274 Bytes
bd977a3
bf1fd9f
 
 
 
 
 
0f3d01e
bf1fd9f
 
b60852c
bf1fd9f
 
 
 
 
 
 
 
d38d4bd
 
b60852c
bf1fd9f
d38d4bd
bf1fd9f
 
 
 
d38d4bd
 
 
 
b60852c
 
d38d4bd
 
 
b60852c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1fd9f
d38d4bd
bf1fd9f
 
 
 
56ff081
bf1fd9f
d38d4bd
bf1fd9f
 
d38d4bd
bf1fd9f
 
 
 
 
56ff081
d38d4bd
56ff081
 
d38d4bd
 
b60852c
56ff081
 
 
bf1fd9f
d38d4bd
56ff081
d38d4bd
56ff081
 
b60852c
d38d4bd
 
 
 
 
 
bf1fd9f
56ff081
b60852c
56ff081
bf1fd9f
 
56ff081
b60852c
d38d4bd
 
 
 
b60852c
 
56ff081
d38d4bd
bf1fd9f
d38d4bd
bf1fd9f
 
b60852c
 
 
 
 
d38d4bd
b60852c
 
 
d38d4bd
b60852c
 
56ff081
bf1fd9f
 
 
56ff081
bf1fd9f
 
56ff081
bf1fd9f
b60852c
 
bf1fd9f
d38d4bd
bf1fd9f
 
 
 
 
 
 
 
 
 
 
d38d4bd
bf1fd9f
 
d38d4bd
bf1fd9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60852c
 
 
 
 
bf1fd9f
 
b60852c
 
 
bf1fd9f
 
 
b60852c
 
bf1fd9f
 
 
 
b60852c
 
bf1fd9f
 
 
 
 
 
 
 
 
 
 
 
 
b60852c
bf1fd9f
 
0f3d01e
bf1fd9f
 
 
 
 
 
 
 
 
 
 
 
 
b60852c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess

# ========== Load Environment Variables ==========
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# CountGD Config (menggantikan DINO-X)
# Pastikan API key CountGD telah di-set di .env dengan key COUNTGD_API_KEY
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")

# Inisialisasi YOLO Model dari Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

# List prompt untuk CountGD (misal: cans, bottle, mixed box)
COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]

# ========== Fungsi untuk Mengecek Overlap ==========
def is_overlap(box1, boxes2, threshold=0.3):
    """
    Mengecek apakah box1 (format: (x_min, y_min, x_max, y_max)) overlap dengan salah satu box di boxes2.
    boxes2 adalah list bounding box dari YOLO dengan format (x_center, y_center, width, height).
    Mengembalikan True jika rasio overlap melebihi threshold.
    """
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x_center, y_center, w2, h2 = b2
        x2_min = x_center - w2 / 2
        x2_max = x_center + w2 / 2
        y2_min = y_center - h2 / 2
        y2_max = y_center + h2 / 2

        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if dx > 0 and dy > 0:
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_box1 > 0 and (area_overlap / area_box1) > threshold:
                return True
    return False

# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name
    
    try:
        # ===== YOLO Detection (Produk Nestlé) =====
        yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
        nestle_class_count = {}
        nestle_boxes = []  # Menyimpan bounding box YOLO dengan format (x_center, y_center, width, height)
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
        total_nestle = sum(nestle_class_count.values())
        
        # ===== CountGD Detection (Produk Kompetitor) =====
        url = "https://api.landing.ai/v1/tools/text-to-object-detection"
        files = {"image": open(temp_path, "rb")}
        # Menggunakan lebih dari satu prompt
        data = {"prompts": COUNTGD_PROMPTS, "model": "countgd"}
        headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
        response = requests.post(url, files=files, data=data, headers=headers)
        result = response.json()
        
        competitor_class_count = {}
        competitor_boxes = []  # Menyimpan bounding box CountGD dengan format (x_min, y_min, x_max, y_max)
        if 'data' in result:
            # Asumsi API mengembalikan list deteksi pada data[0]
            for obj in result['data'][0]:
                if 'bounding_box' in obj:
                    x1, y1, x2, y2 = obj['bounding_box']
                    # Mengambil label jika tersedia, default 'unclassified'
                    label = obj.get('label', 'unclassified')
                    # Hanya tambahkan deteksi jika tidak overlap dengan deteksi YOLO
                    if not is_overlap((x1, y1, x2, y2), nestle_boxes, threshold=0.3):
                        competitor_class_count[label] = competitor_class_count.get(label, 0) + 1
                        competitor_boxes.append((x1, y1, x2, y2))
        total_competitor = sum(competitor_class_count.values())
        
        # ===== Format Output Text =====
        result_text = "Product Nestlé\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
        if total_competitor:
            result_text += "Produk Kompetitor (CountGD) :\n"
            for label, count in competitor_class_count.items():
                result_text += f"{label}: {count}\n"
            result_text += f"\nTotal Produk Kompetitor: {total_competitor}\n"
        else:
            result_text += "No Unclassified Products detected\n"
        
        # ===== Visualisasi =====
        img = cv2.imread(temp_path)
        # Gambar bounding box YOLO (hijau)
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            pt1 = (int(x - w/2), int(y - h/2))
            pt2 = (int(x + w/2), int(y + h/2))
            cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
            cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
                        cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
        # Gambar bounding box CountGD (merah)
        for box in competitor_boxes:
            x1, y1, x2, y2 = box
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            # Tampilkan label hasil CountGD
            cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
                        cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
        
        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)
        return output_path, result_text
    
    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    
    finally:
        if os.path.exists(temp_path):
            os.remove(temp_path)

# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
    try:
        subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
        return output_path
    except subprocess.CalledProcessError as e:
        return None, f"Error converting video: {e}"

def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()
    frame_count = 0
    previous_detections = {}  # Untuk menyimpan deteksi frame sebelumnya

    try:
        # Konversi video ke MP4 jika perlu
        if not video_path.endswith(".mp4"):
            video_path, err = convert_video_to_mp4(video_path, temp_output_path)
            if not video_path:
                return None, f"Video conversion error: {err}"

        video = cv2.VideoCapture(video_path)
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_size = (frame_width, frame_height)

        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)

        while True:
            ret, frame = video.read()
            if not ret:
                break

            frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
            cv2.imwrite(frame_path, frame)

            predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()

            current_detections = {}
            for prediction in predictions['predictions']:
                class_name = prediction['class']
                x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
                object_id = f"{class_name}_{x}_{y}_{w}_{h}"
                if object_id not in current_detections:
                    current_detections[object_id] = class_name
                pt1 = (int(x - w/2), int(y - h/2))
                pt2 = (int(x + w/2), int(y + h/2))
                cv2.rectangle(frame, pt1, pt2, (0,255,0), 2)
                cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)

            object_counts = {}
            for detection_id in current_detections:
                cls = current_detections[detection_id]
                object_counts[cls] = object_counts.get(cls, 0) + 1

            count_text = ""
            total_product_count = 0
            for cls, count in object_counts.items():
                count_text += f"{cls}: {count}\n"
                total_product_count += count
            count_text += f"\nTotal Product: {total_product_count}"
            y_offset = 20
            for line in count_text.split("\n"):
                cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)
                y_offset += 30

            output_video.write(frame)
            frame_count += 1
            previous_detections = current_detections

        video.release()
        output_video.release()

        return temp_output_path

    except Exception as e:
        return None, f"An error occurred: {e}"

# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            detect_image_button = gr.Button("Detect Image")
            output_image = gr.Image(label="Detect Object")
            output_text = gr.Textbox(label="Counting Object")
            detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
        with gr.Column():
            input_video = gr.Video(label="Input Video")
            detect_video_button = gr.Button("Detect Video")
            output_video = gr.Video(label="Output Video")
            detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])

iface.launch()