File size: 5,823 Bytes
dff2bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d2c726
dff2bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import supervision as sv

# ========== Konfigurasi ==========
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . food . drink . bottle"  # Customize sesuai produk kompetitor

# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)

# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name
    
    try:
        # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
        yolo_pred = yolo_model.predict(temp_path, confidence=60, overlap=80).json()
        
        # Hitung per class Nestlé
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))

        total_nestle = sum(nestle_class_count.values())
        
        # ========== [2] DINO-X: Deteksi Kompetitor ==========
        image_url = dinox_client.upload_file(temp_path)
        task = DinoxTask(
            image_url=image_url,
            prompts=[TextPrompt(text=DINOX_PROMPT)],
            bbox_threshold=0.25,
            targets=[DetectionTarget.BBox]
        )
        dinox_client.run_task(task)
        dinox_pred = task.result.objects
        
        # Filter & Hitung Kompetitor
        competitor_class_count = {}
        competitor_boxes = []
        for obj in dinox_pred:
            dinox_box = obj.bbox
            if not is_overlap(dinox_box, nestle_boxes):
                class_name = obj.category.strip().lower()  # Normalisasi nama kelas
                competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                competitor_boxes.append({
                    "class": class_name,
                    "box": dinox_box,
                    "confidence": obj.score
                })
        
        total_competitor = sum(competitor_class_count.values())
        
        # ========== [3] Format Output ==========
        result_text = "Product Nestle\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Product Nestle: {total_nestle}\n\n"
        
        result_text += "Competitor Products\n\n"
        if competitor_class_count:
            for class_name, count in competitor_class_count.items():
                result_text += f"{class_name}: {count}\n"
        else:
            result_text += "No competitors detected\n"
        result_text += f"\nTotal Competitor: {total_competitor}"
        
        # ========== [4] Visualisasi ==========
        img = cv2.imread(temp_path)
        
        # Nestlé (Hijau)
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
            cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
        
        # Kompetitor (Merah)
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
            cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}", 
                       (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2)
        
        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)
        
        return output_path, result_text
    
    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    finally:
        os.remove(temp_path)

def is_overlap(box1, boxes2, threshold=0.3):
    # Fungsi untuk deteksi overlap bounding box
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x2, y2, w2, h2 = b2
        x2_min = x2 - w2/2
        x2_max = x2 + w2/2
        y2_min = y2 - h2/2
        y2_max = y2 + h2/2
        
        # Hitung area overlap
        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if (dx >= 0) and (dy >= 0):
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_overlap / area_box1 > threshold:
                return True
    return False

# ========== Gradio Interface ==========
with gr.Blocks() as iface:
    with gr.Row():
        input_image = gr.Image(type="pil", label="Input Image")
        output_image = gr.Image(label="Detection Result")
        output_text = gr.Textbox(label="Product Counts")
    
    detect_button = gr.Button("Detect Products")
    detect_button.click(
        fn=detect_combined,
        inputs=input_image,
        outputs=[output_image, output_text]
    )

iface.launch()