muhammadsalmanalfaridzi commited on
Commit
dff2bf7
·
verified ·
1 Parent(s): 60e50c4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -0
app.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from dotenv import load_dotenv
3
+ from roboflow import Roboflow
4
+ import tempfile
5
+ import os
6
+ import requests
7
+ import cv2
8
+ import numpy as np
9
+ from dds_cloudapi_sdk import Config, Client
10
+ from dds_cloudapi_sdk.tasks.dinox import DinoxTask
11
+ from dds_cloudapi_sdk.tasks.types import DetectionTarget
12
+ from dds_cloudapi_sdk import TextPrompt
13
+ import supervision as sv
14
+
15
+ # ========== Konfigurasi ==========
16
+ load_dotenv()
17
+
18
+ # Roboflow Config
19
+ rf_api_key = os.getenv("ROBOFLOW_API_KEY")
20
+ workspace = os.getenv("ROBOFLOW_WORKSPACE")
21
+ project_name = os.getenv("ROBOFLOW_PROJECT")
22
+ model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
23
+
24
+ # DINO-X Config
25
+ DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
26
+ DINOX_PROMPT = "beverage . food . drink . bottle . can" # Customize sesuai produk kompetitor
27
+
28
+ # Inisialisasi Model
29
+ rf = Roboflow(api_key=rf_api_key)
30
+ project = rf.workspace(workspace).project(project_name)
31
+ yolo_model = project.version(model_version).model
32
+
33
+ dinox_config = Config(DINOX_API_KEY)
34
+ dinox_client = Client(dinox_config)
35
+
36
+ # ========== Fungsi Deteksi Kombinasi ==========
37
+ def detect_combined(image):
38
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
39
+ image.save(temp_file, format="JPEG")
40
+ temp_path = temp_file.name
41
+
42
+ try:
43
+ # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
44
+ yolo_pred = yolo_model.predict(temp_path, confidence=60, overlap=80).json()
45
+
46
+ # Hitung per class Nestlé
47
+ nestle_class_count = {}
48
+ nestle_boxes = []
49
+ for pred in yolo_pred['predictions']:
50
+ class_name = pred['class']
51
+ nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
52
+ nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
53
+
54
+ total_nestle = sum(nestle_class_count.values())
55
+
56
+ # ========== [2] DINO-X: Deteksi Kompetitor ==========
57
+ image_url = dinox_client.upload_file(temp_path)
58
+ task = DinoxTask(
59
+ image_url=image_url,
60
+ prompts=[TextPrompt(text=DINOX_PROMPT)],
61
+ bbox_threshold=0.25,
62
+ targets=[DetectionTarget.BBox]
63
+ )
64
+ dinox_client.run_task(task)
65
+ dinox_pred = task.result.objects
66
+
67
+ # Filter & Hitung Kompetitor
68
+ competitor_class_count = {}
69
+ competitor_boxes = []
70
+ for obj in dinox_pred:
71
+ dinox_box = obj.bbox
72
+ if not is_overlap(dinox_box, nestle_boxes):
73
+ class_name = obj.category.strip().lower() # Normalisasi nama kelas
74
+ competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
75
+ competitor_boxes.append({
76
+ "class": class_name,
77
+ "box": dinox_box,
78
+ "confidence": obj.score
79
+ })
80
+
81
+ total_competitor = sum(competitor_class_count.values())
82
+
83
+ # ========== [3] Format Output ==========
84
+ result_text = "Product Nestle\n\n"
85
+ for class_name, count in nestle_class_count.items():
86
+ result_text += f"{class_name}: {count}\n"
87
+ result_text += f"\nTotal Product Nestle: {total_nestle}\n\n"
88
+
89
+ result_text += "Competitor Products\n\n"
90
+ if competitor_class_count:
91
+ for class_name, count in competitor_class_count.items():
92
+ result_text += f"{class_name}: {count}\n"
93
+ else:
94
+ result_text += "No competitors detected\n"
95
+ result_text += f"\nTotal Competitor: {total_competitor}"
96
+
97
+ # ========== [4] Visualisasi ==========
98
+ img = cv2.imread(temp_path)
99
+
100
+ # Nestlé (Hijau)
101
+ for pred in yolo_pred['predictions']:
102
+ x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
103
+ cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
104
+ cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
105
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
106
+
107
+ # Kompetitor (Merah)
108
+ for comp in competitor_boxes:
109
+ x1, y1, x2, y2 = comp['box']
110
+ cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
111
+ cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}",
112
+ (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2)
113
+
114
+ output_path = "/tmp/combined_output.jpg"
115
+ cv2.imwrite(output_path, img)
116
+
117
+ return output_path, result_text
118
+
119
+ except Exception as e:
120
+ return temp_path, f"Error: {str(e)}"
121
+ finally:
122
+ os.remove(temp_path)
123
+
124
+ def is_overlap(box1, boxes2, threshold=0.3):
125
+ # Fungsi untuk deteksi overlap bounding box
126
+ x1_min, y1_min, x1_max, y1_max = box1
127
+ for b2 in boxes2:
128
+ x2, y2, w2, h2 = b2
129
+ x2_min = x2 - w2/2
130
+ x2_max = x2 + w2/2
131
+ y2_min = y2 - h2/2
132
+ y2_max = y2 + h2/2
133
+
134
+ # Hitung area overlap
135
+ dx = min(x1_max, x2_max) - max(x1_min, x2_min)
136
+ dy = min(y1_max, y2_max) - max(y1_min, y2_min)
137
+ if (dx >= 0) and (dy >= 0):
138
+ area_overlap = dx * dy
139
+ area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
140
+ if area_overlap / area_box1 > threshold:
141
+ return True
142
+ return False
143
+
144
+ # ========== Gradio Interface ==========
145
+ with gr.Blocks() as iface:
146
+ with gr.Row():
147
+ input_image = gr.Image(type="pil", label="Input Image")
148
+ output_image = gr.Image(label="Detection Result")
149
+ output_text = gr.Textbox(label="Product Counts")
150
+
151
+ detect_button = gr.Button("Detect Products")
152
+ detect_button.click(
153
+ fn=detect_combined,
154
+ inputs=input_image,
155
+ outputs=[output_image, output_text]
156
+ )
157
+
158
+ iface.launch()