Spaces:
Sleeping
Sleeping
modified code and add files
Browse files- app.py +22 -16
- corpus/all_embeddings_disease.pickle +3 -0
- corpus/y_all_disease.pickle +3 -0
app.py
CHANGED
@@ -6,10 +6,11 @@ from pydantic import BaseModel
|
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
import torch
|
8 |
|
9 |
-
corpus = pickle.load(open("./corpus/
|
10 |
-
label_encoder = pickle.load(open("./corpus/label_encoder.pickle", "rb"))
|
11 |
-
model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
12 |
-
|
|
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
@@ -24,27 +25,32 @@ app.add_middleware(
|
|
24 |
class Disease(BaseModel):
|
25 |
id: int
|
26 |
name: str
|
|
|
27 |
score: float
|
28 |
|
29 |
class Symptoms(BaseModel):
|
30 |
query: str
|
31 |
|
32 |
-
@app.get("/")
|
33 |
-
def greet_json():
|
34 |
-
|
35 |
|
36 |
@app.post("/", response_model=list[Disease])
|
37 |
async def predict(symptoms: Symptoms):
|
38 |
query_embedding = model.encode(symptoms.query).astype('float')
|
39 |
similarity_vectors = model.similarity(query_embedding, corpus)[0]
|
40 |
scores, indicies = torch.topk(similarity_vectors, k=len(corpus))
|
41 |
-
#
|
42 |
-
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
return diseases
|
|
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
import torch
|
8 |
|
9 |
+
corpus = pickle.load(open("./corpus/all_embeddings_disease.pickle", "rb"))
|
10 |
+
# label_encoder = pickle.load(open("./corpus/label_encoder.pickle", "rb"))
|
11 |
+
# model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
12 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
13 |
+
df = pd.DataFrame(pickle.load(open("./corpus/y_all_disease.pickle", "rb")))
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
|
|
25 |
class Disease(BaseModel):
|
26 |
id: int
|
27 |
name: str
|
28 |
+
url: str
|
29 |
score: float
|
30 |
|
31 |
class Symptoms(BaseModel):
|
32 |
query: str
|
33 |
|
34 |
+
# @app.get("/")
|
35 |
+
# def greet_json():
|
36 |
+
# return {"Hello": "World!"}
|
37 |
|
38 |
@app.post("/", response_model=list[Disease])
|
39 |
async def predict(symptoms: Symptoms):
|
40 |
query_embedding = model.encode(symptoms.query).astype('float')
|
41 |
similarity_vectors = model.similarity(query_embedding, corpus)[0]
|
42 |
scores, indicies = torch.topk(similarity_vectors, k=len(corpus))
|
43 |
+
# id_ = df.iloc[indicies].reset_index(drop=True)
|
44 |
+
df = df.iloc[indicies]
|
45 |
+
# id_ = id_.drop_duplicates("label")
|
46 |
+
df["scores"] = scores
|
47 |
+
# scores = scores[id_.index]
|
48 |
+
# diseases = label_encoder.inverse_transform(id_.label.values)
|
49 |
+
# id_ = id_.label.values
|
50 |
+
diseases = [dict({"id": value[0],
|
51 |
+
"name": value[1],
|
52 |
+
"score" : value[2],
|
53 |
+
"url" : value[3],
|
54 |
+
})
|
55 |
+
for value in zip(df.index, df["name"], df["scores"], df["url"])]
|
56 |
return diseases
|
corpus/all_embeddings_disease.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a003c5bc180aaff3d06b5f64ee28034512937629b635605a2bb56edd267ff9
|
3 |
+
size 4045987
|
corpus/y_all_disease.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a003c5bc180aaff3d06b5f64ee28034512937629b635605a2bb56edd267ff9
|
3 |
+
size 4045987
|