Spaces:
Sleeping
Sleeping
fix request body
Browse files
app.py
CHANGED
@@ -26,13 +26,16 @@ class Disease(BaseModel):
|
|
26 |
name: str
|
27 |
score: float
|
28 |
|
|
|
|
|
|
|
29 |
@app.get("/")
|
30 |
def greet_json():
|
31 |
return {"Hello": "World!"}
|
32 |
|
33 |
@app.post("/", response_model=list[Disease])
|
34 |
-
async def predict(
|
35 |
-
query_embedding = model.encode(query).astype('float')
|
36 |
similarity_vectors = model.similarity(query_embedding, corpus)[0]
|
37 |
scores, indicies = torch.topk(similarity_vectors, k=len(corpus))
|
38 |
# print("Similarity Vector Shape: ", similarity_vectors.shape)
|
|
|
26 |
name: str
|
27 |
score: float
|
28 |
|
29 |
+
class Symptoms(BaseModel):
|
30 |
+
query: str
|
31 |
+
|
32 |
@app.get("/")
|
33 |
def greet_json():
|
34 |
return {"Hello": "World!"}
|
35 |
|
36 |
@app.post("/", response_model=list[Disease])
|
37 |
+
async def predict(symptoms: Symptoms):
|
38 |
+
query_embedding = model.encode(symptoms.query).astype('float')
|
39 |
similarity_vectors = model.similarity(query_embedding, corpus)[0]
|
40 |
scores, indicies = torch.topk(similarity_vectors, k=len(corpus))
|
41 |
# print("Similarity Vector Shape: ", similarity_vectors.shape)
|