Spaces:
Sleeping
Sleeping
update code
Browse files
app.py
CHANGED
@@ -30,24 +30,17 @@ class Disease(BaseModel):
|
|
30 |
def greet_json():
|
31 |
return {"Hello": "World!"}
|
32 |
|
33 |
-
# @app.post("/")
|
34 |
-
# async def greet_post():
|
35 |
-
# return {"Hello": "Post World!"}
|
36 |
-
|
37 |
@app.post("/", response_model=list[Disease])
|
38 |
async def predict(query: str):
|
39 |
query_embedding = model.encode(query).astype('float')
|
40 |
similarity_vectors = model.similarity(query_embedding, corpus)[0]
|
41 |
-
print("Similarity Vector Shape: ", similarity_vectors.shape)
|
42 |
scores, indicies = torch.topk(similarity_vectors, k=len(corpus))
|
43 |
-
print("
|
44 |
-
print("
|
|
|
45 |
id_ = df.iloc[indicies].reset_index(drop=True)
|
46 |
id_ = id_.drop_duplicates("label")
|
47 |
-
print(id_.columns)
|
48 |
-
print(scores)
|
49 |
scores = scores[id_.index]
|
50 |
-
print(scores)
|
51 |
diseases = label_encoder.inverse_transform(id_.label.values)
|
52 |
id_ = id_.label.values
|
53 |
diseases = [dict({"id": value[0], "name": value[1], "score" : value[2]}) for value in zip(id_, diseases, scores)]
|
|
|
30 |
def greet_json():
|
31 |
return {"Hello": "World!"}
|
32 |
|
|
|
|
|
|
|
|
|
33 |
@app.post("/", response_model=list[Disease])
|
34 |
async def predict(query: str):
|
35 |
query_embedding = model.encode(query).astype('float')
|
36 |
similarity_vectors = model.similarity(query_embedding, corpus)[0]
|
|
|
37 |
scores, indicies = torch.topk(similarity_vectors, k=len(corpus))
|
38 |
+
# print("Similarity Vector Shape: ", similarity_vectors.shape)
|
39 |
+
# print("Scores Shape: ", scores.shape)
|
40 |
+
# print("Indicies Shape: ", indicies.shape)
|
41 |
id_ = df.iloc[indicies].reset_index(drop=True)
|
42 |
id_ = id_.drop_duplicates("label")
|
|
|
|
|
43 |
scores = scores[id_.index]
|
|
|
44 |
diseases = label_encoder.inverse_transform(id_.label.values)
|
45 |
id_ = id_.label.values
|
46 |
diseases = [dict({"id": value[0], "name": value[1], "score" : value[2]}) for value in zip(id_, diseases, scores)]
|