|
## Getting started |
|
|
|
Start by cloning the repo: |
|
|
|
```bash |
|
git clone --depth 1 [email protected]:YuliangXiu/ECON.git |
|
cd ECON |
|
``` |
|
|
|
## Environment |
|
|
|
- Ubuntu 20 / 18, (Windows as well, see [issue#7](https://github.com/YuliangXiu/ECON/issues/7)) |
|
- **CUDA=11.6, GPU Memory > 12GB** |
|
- Python = 3.8 |
|
- PyTorch >= 1.13.0 (official [Get Started](https://pytorch.org/get-started/locally/)) |
|
- Cupy >= 11.3.0 (offcial [Installation](https://docs.cupy.dev/en/stable/install.html#installing-cupy-from-pypi)) |
|
- PyTorch3D = 0.7.1 (official [INSTALL.md](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md), recommend [install-from-local-clone](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md#2-install-from-a-local-clone)) |
|
|
|
```bash |
|
|
|
sudo apt-get install libeigen3-dev ffmpeg |
|
|
|
# install required packages |
|
cd ECON |
|
conda env create -f environment.yaml |
|
conda activate econ |
|
pip install -r requirements.txt |
|
|
|
# the installation(incl. compilation) of PyTorch3D will take ~20min |
|
pip install git+https://github.com/facebookresearch/[email protected] |
|
|
|
# install libmesh & libvoxelize |
|
cd lib/common/libmesh |
|
python setup.py build_ext --inplace |
|
cd ../libvoxelize |
|
python setup.py build_ext --inplace |
|
``` |
|
|
|
## Register at [ICON's website](https://icon.is.tue.mpg.de/) |
|
|
|
 |
|
Required: |
|
|
|
- [SMPL](http://smpl.is.tue.mpg.de/): SMPL Model (Male, Female) |
|
- [SMPL-X](http://smpl-x.is.tue.mpg.de/): SMPL-X Model, used for training |
|
- [SMPLIFY](http://smplify.is.tue.mpg.de/): SMPL Model (Neutral) |
|
- [PIXIE](https://icon.is.tue.mpg.de/user.php): PIXIE SMPL-X estimator |
|
|
|
:warning: Click **Register now** on all dependencies, then you can download them all with **ONE** account. |
|
|
|
## Downloading required models and extra data |
|
|
|
```bash |
|
cd ECON |
|
bash fetch_data.sh # requires username and password |
|
``` |
|
|
|
## Citation |
|
|
|
:+1: Please consider citing these awesome HPS approaches: PyMAF-X, PIXIE |
|
|
|
|
|
``` |
|
@article{pymafx2022, |
|
title={PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images}, |
|
author={Zhang, Hongwen and Tian, Yating and Zhang, Yuxiang and Li, Mengcheng and An, Liang and Sun, Zhenan and Liu, Yebin}, |
|
journal={arXiv preprint arXiv:2207.06400}, |
|
year={2022} |
|
} |
|
|
|
|
|
@inproceedings{PIXIE:2021, |
|
title={Collaborative Regression of Expressive Bodies using Moderation}, |
|
author={Yao Feng and Vasileios Choutas and Timo Bolkart and Dimitrios Tzionas and Michael J. Black}, |
|
booktitle={International Conference on 3D Vision (3DV)}, |
|
year={2021} |
|
} |
|
|
|
|
|
``` |
|
|