Spaces:
Sleeping
Sleeping
File size: 9,328 Bytes
5729146 b125eed 5729146 b125eed 3ad72e2 5729146 b125eed ffd98eb 6d6cf98 2008110 b125eed 0a16a11 b125eed 2008110 b125eed 5729146 b125eed 5729146 b125eed 5729146 b125eed ffd98eb b125eed 5729146 ceedd37 b125eed 5729146 ceedd37 5729146 6e9a62d 5729146 b125eed 5729146 b125eed d11c400 b125eed 4fc9fba b125eed 5729146 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# import os
# # import json
# import numpy as np
# import pandas as pd
# import openai
# from haystack.schema import Document
# import streamlit as st
# from tenacity import retry, stop_after_attempt, wait_random_exponential
# # Get openai API key
# # openai.api_key = os.environ["OPENAI_API_KEY"]
# hf_token = os.environ["HF_API_KEY"]
# #model_select = "gpt-3.5-turbo-0125"
# model_select ="gpt-4"
# # define a special function for putting the prompt together (as we can't use haystack)
# def get_prompt(context, label):
# base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
# Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
# If there is no mention of "+label+" in the context, return nothing. \
# Formatting example: \
# - Bullet point 1 \
# - Bullet point 2 \
# "
# # Add the meta data for references
# # context = ' - '.join([d.content for d in docs])
# prompt = base_prompt+"; Context: "+context+"; Answer:"
# return prompt
# # def get_prompt(context, label):
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
# # Summarize only elements of the context that address vulnerability to climate change. \
# # Formatting example: \
# # - Bullet point 1 \
# # - Bullet point 2 \
# # "
# # # Add the meta data for references
# # # context = ' - '.join([d.content for d in docs])
# # prompt = base_prompt+"; Context: "+context+"; Answer:"
# # return prompt
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better- but keep concrete goals. \
# # Summarize only activities that address the vulnerability of "+label+" to climate change. \
# # Formatting example: \
# # - Collect and utilize gender-disaggregated data to inform and improve climate change adaptation efforts. \
# # - Prioritize gender sensitivity in adaptation options, ensuring participation and benefits for women, who are more vulnerable to climate impacts. \
# # "
# # # convert df rows to Document object so we can feed it into the summarizer easily
# # def get_document(df):
# # # we take a list of each extract
# # ls_dict = []
# # for index, row in df.iterrows():
# # # Create a Document object for each row (we only need the text)
# # doc = Document(
# # row['text'],
# # meta={
# # 'label': row['Vulnerability Label']}
# # )
# # # Append the Document object to the documents list
# # ls_dict.append(doc)
# # return ls_dict
# # exception handling for issuing multiple API calls to openai (exponential backoff)
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
# def completion_with_backoff(**kwargs):
# return openai.ChatCompletion.create(**kwargs)
# # construct RAG query, send to openai and process response
# def run_query(context, label):
# '''
# For non-streamed completion, enable the following 2 lines and comment out the code below
# '''
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
# # result = res.choices[0].message.content
# # instantiate ChatCompletion as a generator object (stream is set to True)
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
# # iterate through the streamed output
# report = []
# res_box = st.empty()
# for chunk in response:
# # extract the object containing the text (totally different structure when streaming)
# chunk_message = chunk['choices'][0]['delta']
# # test to make sure there is text in the object (some don't have)
# if 'content' in chunk_message:
# report.append(chunk_message.content) # extract the message
# # add the latest text and merge it with all previous
# result = "".join(report).strip()
# # res_box.success(result) # output to response text box
# res_box.success(result)
import os
# import json
import numpy as np
import pandas as pd
import openai
from haystack.schema import Document
import streamlit as st
from tenacity import retry, stop_after_attempt, wait_random_exponential
from huggingface_hub import InferenceClient
# Get openai API key
hf_token = os.environ["HF_API_KEY"]
# define a special function for putting the prompt together (as we can't use haystack)
def get_prompt(context, label):
base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
If there is no mention of "+label+" in the context, return nothing. \
Formatting example: \
- Bullet point 1 \
- Bullet point 2 \
"
# Add the meta data for references
# context = ' - '.join([d.content for d in docs])
prompt = base_prompt+"; Context: "+context+"; Answer:"
return prompt
# # exception handling for issuing multiple API calls to openai (exponential backoff)
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
# def completion_with_backoff(**kwargs):
# return openai.ChatCompletion.create(**kwargs)
def get_prompt(context, label):
base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
If there is no mention of "+label+" in the context, return nothing. \
Do not include an introduction sentence, just the bullet points as per below. \
Formatting example: \
- Bullet point 1 \
- Bullet point 2 \
"
# Add the meta data for references
# context = ' - '.join([d.content for d in docs])
prompt = base_prompt+"; Context: "+context+"; Answer:"
return prompt
# # construct RAG query, send to openai and process response
# def run_query(context, label, chatbot_role):
# '''
# For non-streamed completion, enable the following 2 lines and comment out the code below
# '''
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
# # result = res.choices[0].message.content
# messages = [
# ChatMessage(role="system", content=chatbot_role),
# ChatMessage(role="user", content=get_prompt(context, label)),
# ]
# response = llm.chat(messages)
# return(response)
# tokenizer = AutoTokenizer.from_pretrained(
# "meta-llama/Meta-Llama-3.1-8B-Instruct",
# token=hf_token,
# )
# stopping_ids = [
# tokenizer.eos_token_id,
# tokenizer.convert_tokens_to_ids("<|eot_id|>"),
# ]
# Define the role of the chatbot
# chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
# construct RAG query, send to openai and process response
def run_query(context, label):
'''
For non-streamed completion, enable the following 2 lines and comment out the code below
'''
chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
messages = [{"role": "system", "content": chatbot_role},{"role": "user", "content": get_prompt(context, label)}]
# res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
# result = res.choices[0].message.content
# Initialize the client, pointing it to one of the available models
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token = hf_token)
# response = client.chat.completions.create(
# model="meta-llama/Meta-Llama-3.1-8B-Instruct",
# messages=[
# ChatMessage(role="system", content=chatbot_role),
# ChatMessage(role="user", content=get_prompt(context, label)),
# ],
# stream=True,
# max_tokens=500
# )
# iterate and print stream
# for message in chat_completion:
# print(message.choices[0].delta.content, end="")
# instantiate ChatCompletion as a generator object (stream is set to True)
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
# iterate through the streamed output
report = []
res_box = st.empty()
for chunk in client.chat_completion(messages, stream=True):
# extract the object containing the text (totally different structure when streaming)
chunk_message = chunk['choices'][0]['delta']
# test to make sure there is text in the object (some don't have)
if 'content' in chunk_message:
report.append(chunk_message['content']) # extract the message
# add the latest text and merge it with all previous
result = "".join(report).strip()
# res_box.success(result) # output to response text box
res_box.success(result)
|