Spaces:
Sleeping
Sleeping
Update appStore/rag.py
Browse files- appStore/rag.py +176 -40
appStore/rag.py
CHANGED
|
@@ -1,3 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
# import json
|
| 3 |
import numpy as np
|
|
@@ -6,12 +107,12 @@ import openai
|
|
| 6 |
from haystack.schema import Document
|
| 7 |
import streamlit as st
|
| 8 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
# Get openai API key
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
model_select ="gpt-4"
|
| 15 |
|
| 16 |
# define a special function for putting the prompt together (as we can't use haystack)
|
| 17 |
def get_prompt(context, label):
|
|
@@ -29,59 +130,91 @@ def get_prompt(context, label):
|
|
| 29 |
|
| 30 |
return prompt
|
| 31 |
|
| 32 |
-
# def get_prompt(context, label):
|
| 33 |
-
# base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
| 34 |
-
# Summarize only elements of the context that address vulnerability to climate change. \
|
| 35 |
-
# Formatting example: \
|
| 36 |
-
# - Bullet point 1 \
|
| 37 |
-
# - Bullet point 2 \
|
| 38 |
-
# "
|
| 39 |
|
| 40 |
-
# # Add the meta data for references
|
| 41 |
-
# # context = ' - '.join([d.content for d in docs])
|
| 42 |
-
# prompt = base_prompt+"; Context: "+context+"; Answer:"
|
| 43 |
-
|
| 44 |
-
# return prompt
|
| 45 |
|
| 46 |
-
# base_prompt="Summarize the following context efficiently in bullet points, the less the better- but keep concrete goals. \
|
| 47 |
-
# Summarize only activities that address the vulnerability of "+label+" to climate change. \
|
| 48 |
-
# Formatting example: \
|
| 49 |
-
# - Collect and utilize gender-disaggregated data to inform and improve climate change adaptation efforts. \
|
| 50 |
-
# - Prioritize gender sensitivity in adaptation options, ensuring participation and benefits for women, who are more vulnerable to climate impacts. \
|
| 51 |
-
# "
|
| 52 |
-
# # convert df rows to Document object so we can feed it into the summarizer easily
|
| 53 |
-
# def get_document(df):
|
| 54 |
-
# # we take a list of each extract
|
| 55 |
-
# ls_dict = []
|
| 56 |
-
# for index, row in df.iterrows():
|
| 57 |
-
# # Create a Document object for each row (we only need the text)
|
| 58 |
-
# doc = Document(
|
| 59 |
-
# row['text'],
|
| 60 |
-
# meta={
|
| 61 |
-
# 'label': row['Vulnerability Label']}
|
| 62 |
-
# )
|
| 63 |
-
# # Append the Document object to the documents list
|
| 64 |
-
# ls_dict.append(doc)
|
| 65 |
|
| 66 |
-
#
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
# construct RAG query, send to openai and process response
|
| 76 |
def run_query(context, label):
|
| 77 |
'''
|
| 78 |
For non-streamed completion, enable the following 2 lines and comment out the code below
|
| 79 |
'''
|
|
|
|
|
|
|
| 80 |
# res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
| 81 |
# result = res.choices[0].message.content
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
# instantiate ChatCompletion as a generator object (stream is set to True)
|
| 84 |
-
response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|
| 85 |
# iterate through the streamed output
|
| 86 |
report = []
|
| 87 |
res_box = st.empty()
|
|
@@ -102,3 +235,6 @@ def run_query(context, label):
|
|
| 102 |
|
| 103 |
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import os
|
| 2 |
+
# # import json
|
| 3 |
+
# import numpy as np
|
| 4 |
+
# import pandas as pd
|
| 5 |
+
# import openai
|
| 6 |
+
# from haystack.schema import Document
|
| 7 |
+
# import streamlit as st
|
| 8 |
+
# from tenacity import retry, stop_after_attempt, wait_random_exponential
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# # Get openai API key
|
| 12 |
+
# # openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 13 |
+
# hf_token = os.environ["HF_API_KEY"]
|
| 14 |
+
# #model_select = "gpt-3.5-turbo-0125"
|
| 15 |
+
# model_select ="gpt-4"
|
| 16 |
+
|
| 17 |
+
# # define a special function for putting the prompt together (as we can't use haystack)
|
| 18 |
+
# def get_prompt(context, label):
|
| 19 |
+
# base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
| 20 |
+
# Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
|
| 21 |
+
# If there is no mention of "+label+" in the context, return nothing. \
|
| 22 |
+
# Formatting example: \
|
| 23 |
+
# - Bullet point 1 \
|
| 24 |
+
# - Bullet point 2 \
|
| 25 |
+
# "
|
| 26 |
+
|
| 27 |
+
# # Add the meta data for references
|
| 28 |
+
# # context = ' - '.join([d.content for d in docs])
|
| 29 |
+
# prompt = base_prompt+"; Context: "+context+"; Answer:"
|
| 30 |
+
|
| 31 |
+
# return prompt
|
| 32 |
+
|
| 33 |
+
# # def get_prompt(context, label):
|
| 34 |
+
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
| 35 |
+
# # Summarize only elements of the context that address vulnerability to climate change. \
|
| 36 |
+
# # Formatting example: \
|
| 37 |
+
# # - Bullet point 1 \
|
| 38 |
+
# # - Bullet point 2 \
|
| 39 |
+
# # "
|
| 40 |
+
|
| 41 |
+
# # # Add the meta data for references
|
| 42 |
+
# # # context = ' - '.join([d.content for d in docs])
|
| 43 |
+
# # prompt = base_prompt+"; Context: "+context+"; Answer:"
|
| 44 |
+
|
| 45 |
+
# # return prompt
|
| 46 |
+
|
| 47 |
+
# # base_prompt="Summarize the following context efficiently in bullet points, the less the better- but keep concrete goals. \
|
| 48 |
+
# # Summarize only activities that address the vulnerability of "+label+" to climate change. \
|
| 49 |
+
# # Formatting example: \
|
| 50 |
+
# # - Collect and utilize gender-disaggregated data to inform and improve climate change adaptation efforts. \
|
| 51 |
+
# # - Prioritize gender sensitivity in adaptation options, ensuring participation and benefits for women, who are more vulnerable to climate impacts. \
|
| 52 |
+
# # "
|
| 53 |
+
# # # convert df rows to Document object so we can feed it into the summarizer easily
|
| 54 |
+
# # def get_document(df):
|
| 55 |
+
# # # we take a list of each extract
|
| 56 |
+
# # ls_dict = []
|
| 57 |
+
# # for index, row in df.iterrows():
|
| 58 |
+
# # # Create a Document object for each row (we only need the text)
|
| 59 |
+
# # doc = Document(
|
| 60 |
+
# # row['text'],
|
| 61 |
+
# # meta={
|
| 62 |
+
# # 'label': row['Vulnerability Label']}
|
| 63 |
+
# # )
|
| 64 |
+
# # # Append the Document object to the documents list
|
| 65 |
+
# # ls_dict.append(doc)
|
| 66 |
+
|
| 67 |
+
# # return ls_dict
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# # exception handling for issuing multiple API calls to openai (exponential backoff)
|
| 71 |
+
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
| 72 |
+
# def completion_with_backoff(**kwargs):
|
| 73 |
+
# return openai.ChatCompletion.create(**kwargs)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# # construct RAG query, send to openai and process response
|
| 77 |
+
# def run_query(context, label):
|
| 78 |
+
# '''
|
| 79 |
+
# For non-streamed completion, enable the following 2 lines and comment out the code below
|
| 80 |
+
# '''
|
| 81 |
+
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
| 82 |
+
# # result = res.choices[0].message.content
|
| 83 |
+
|
| 84 |
+
# # instantiate ChatCompletion as a generator object (stream is set to True)
|
| 85 |
+
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|
| 86 |
+
# # iterate through the streamed output
|
| 87 |
+
# report = []
|
| 88 |
+
# res_box = st.empty()
|
| 89 |
+
# for chunk in response:
|
| 90 |
+
# # extract the object containing the text (totally different structure when streaming)
|
| 91 |
+
# chunk_message = chunk['choices'][0]['delta']
|
| 92 |
+
# # test to make sure there is text in the object (some don't have)
|
| 93 |
+
# if 'content' in chunk_message:
|
| 94 |
+
# report.append(chunk_message.content) # extract the message
|
| 95 |
+
# # add the latest text and merge it with all previous
|
| 96 |
+
# result = "".join(report).strip()
|
| 97 |
+
# # res_box.success(result) # output to response text box
|
| 98 |
+
# res_box.success(result)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
import os
|
| 103 |
# import json
|
| 104 |
import numpy as np
|
|
|
|
| 107 |
from haystack.schema import Document
|
| 108 |
import streamlit as st
|
| 109 |
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
| 110 |
+
from huggingface_hub import InferenceClient
|
| 111 |
|
| 112 |
|
| 113 |
# Get openai API key
|
| 114 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 115 |
+
|
|
|
|
| 116 |
|
| 117 |
# define a special function for putting the prompt together (as we can't use haystack)
|
| 118 |
def get_prompt(context, label):
|
|
|
|
| 130 |
|
| 131 |
return prompt
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
# # exception handling for issuing multiple API calls to openai (exponential backoff)
|
| 137 |
+
# @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
| 138 |
+
# def completion_with_backoff(**kwargs):
|
| 139 |
+
# return openai.ChatCompletion.create(**kwargs)
|
| 140 |
|
| 141 |
|
| 142 |
+
def get_prompt(context, label):
|
| 143 |
+
base_prompt="Summarize the following context efficiently in bullet points, the less the better - but keep concrete goals. \
|
| 144 |
+
Summarize only elements of the context that address vulnerability of "+label+" to climate change. \
|
| 145 |
+
If there is no mention of "+label+" in the context, return nothing. \
|
| 146 |
+
Do not include an introduction sentence, just the bullet points as per below. \
|
| 147 |
+
Formatting example: \
|
| 148 |
+
- Bullet point 1 \
|
| 149 |
+
- Bullet point 2 \
|
| 150 |
+
"
|
| 151 |
+
|
| 152 |
+
# Add the meta data for references
|
| 153 |
+
# context = ' - '.join([d.content for d in docs])
|
| 154 |
+
prompt = base_prompt+"; Context: "+context+"; Answer:"
|
| 155 |
+
|
| 156 |
+
return prompt
|
| 157 |
|
| 158 |
|
| 159 |
+
# # construct RAG query, send to openai and process response
|
| 160 |
+
# def run_query(context, label, chatbot_role):
|
| 161 |
+
# '''
|
| 162 |
+
# For non-streamed completion, enable the following 2 lines and comment out the code below
|
| 163 |
+
# '''
|
| 164 |
+
# # res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
| 165 |
+
# # result = res.choices[0].message.content
|
| 166 |
+
|
| 167 |
+
# messages = [
|
| 168 |
+
# ChatMessage(role="system", content=chatbot_role),
|
| 169 |
+
# ChatMessage(role="user", content=get_prompt(context, label)),
|
| 170 |
+
# ]
|
| 171 |
+
# response = llm.chat(messages)
|
| 172 |
+
# return(response)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
| 177 |
+
# "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 178 |
+
# token=hf_token,
|
| 179 |
+
# )
|
| 180 |
+
|
| 181 |
+
# stopping_ids = [
|
| 182 |
+
# tokenizer.eos_token_id,
|
| 183 |
+
# tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
| 184 |
+
# ]
|
| 185 |
+
|
| 186 |
+
# Define the role of the chatbot
|
| 187 |
+
# chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
|
| 188 |
+
|
| 189 |
# construct RAG query, send to openai and process response
|
| 190 |
def run_query(context, label):
|
| 191 |
'''
|
| 192 |
For non-streamed completion, enable the following 2 lines and comment out the code below
|
| 193 |
'''
|
| 194 |
+
chatbot_role = """You are an analyst specializing in climate change impact assessments and producing insights from policy documents."""
|
| 195 |
+
|
| 196 |
# res = openai.ChatCompletion.create(model=model_select, messages=[{"role": "user", "content": get_prompt(docs)}])
|
| 197 |
# result = res.choices[0].message.content
|
| 198 |
|
| 199 |
+
# Initialize the client, pointing it to one of the available models
|
| 200 |
+
client = InferenceClient()
|
| 201 |
+
|
| 202 |
+
response = client.chat.completions.create(
|
| 203 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
| 204 |
+
messages=[
|
| 205 |
+
ChatMessage(role="system", content=chatbot_role),
|
| 206 |
+
ChatMessage(role="user", content=get_prompt(context, label)),
|
| 207 |
+
],
|
| 208 |
+
stream=True,
|
| 209 |
+
max_tokens=500
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# iterate and print stream
|
| 213 |
+
for message in chat_completion:
|
| 214 |
+
print(message.choices[0].delta.content, end="")
|
| 215 |
+
|
| 216 |
# instantiate ChatCompletion as a generator object (stream is set to True)
|
| 217 |
+
# response = completion_with_backoff(model=model_select, messages=[{"role": "user", "content": get_prompt(context, label)}], stream=True)
|
| 218 |
# iterate through the streamed output
|
| 219 |
report = []
|
| 220 |
res_box = st.empty()
|
|
|
|
| 235 |
|
| 236 |
|
| 237 |
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|