Spaces:
Runtime error
Runtime error
File size: 6,247 Bytes
c8eb530 8ab0364 e912c09 9cdcc72 9f81930 9cdcc72 34ad65a 9cdcc72 d2b25d2 1575629 e1dedcd 9cdcc72 1575629 e1dedcd 1575629 e1dedcd 1575629 e1dedcd 1575629 3721bac 1575629 3721bac 1575629 20b392a 1575629 6da1c0b 1575629 17ef5ad 6f01fbc 5a4b240 c440214 ce50170 20b392a c440214 a458b72 c440214 9cdcc72 f350d00 20b392a f350d00 dea7b6e f617c7f 45ffe72 34ad65a 27053c2 bbff215 e5bae86 dcd5d11 f617c7f d795229 e5bae86 f617c7f deea3a0 c4563cf e5bae86 4328889 3060edf e5bae86 359c476 e1b34be 6f10fe5 ff0615d 4fc1e37 433885e ff0615d 36f13d0 ef960af 743df42 4d77a90 743df42 dcd5d11 5206882 6a2ee5c 7d9e72a dcd5d11 9b622fc d795229 dcd5d11 04abba1 b2a7a90 04abba1 c02123b 04abba1 dcd5d11 72fa6e5 3999636 72fa6e5 6765628 72fa6e5 3999636 1120aac 04abba1 b2a7a90 3f39071 1251c48 f00c1c8 3721bac 8ab0364 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
'''
This script calls the model from openai api to predict the next few words in a conversation.
'''
import os
import sys
import openai
import gradio as gr
os.system("pip install git+https://github.com/openai/whisper.git")
import whisper
from transformers import pipeline
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import time
import pandas as pd
EXAMPLE_PROMPT = """This is a tool for helping someone with memory issues remember the next word.
The predictions follow a few rules:
1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
2) The predictions do not repeat themselves.
3) The predictions focus on suggesting nouns, adjectives, and verbs.
4) The predictions are related to the context in the transcript.
5) The predictions are ordered from most likely to least likely.
6) Five unique predictions are made per transcript.
EXAMPLES:
Transcript: Tomorrow night we're going out to
Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend
Transcript: I would like to order a cheeseburger with a side of
Prediction: French fries, Milkshake, Apple slices, Side salad, Extra catsup
Transcript: My friend Savanah is
Prediction: An electrical engineer, A marine biologist, A classical musician, A developer, A product manager
Transcript: I need to buy a birthday
Prediction: Present, Gift, Cake, Card, balloon
Transcript: """
# whisper model specification
asr_model = whisper.load_model("tiny")
openai.api_key = os.environ["Openai_APIkey"]
# Transcribe function
def transcribe(audio_file):
print("Transcribing")
transcription = asr_model.transcribe(audio_file)["text"]
#transcription = asr_model.transcribe(audio_file)
return transcription
def inference(audio, latest):
# Transcribe with Whisper
print("The audio is:", audio)
transcript = transcribe(audio)
if transcript != None:
latest.append(transcript)
#tscript = EXAMPLE_PROMPT + str(transcript) + "\nPrediction: "
tscript = EXAMPLE_PROMPT + str(latest) + "\nPrediction: "
else: tscript = EXAMPLE_PROMPT
print("tscript ------- ", tscript)
response = openai.Completion.create(
model="text-davinci-003",
prompt=tscript,
temperature=0.8,
max_tokens=18,
n=5)
#infers = []
#infers = []
temp = []
inferred=[]
for i in range(5):
print("print1 ", response['choices'][i]['text'])
temp.append(response['choices'][i]['text'])
print("print2: infers ", inferred)
print("print3: Responses ", response)
print("Object type of response: ", type(response))
#infered = list(map(lambda x: x.split(',')[0], infers))
#print("Infered type is: ", type(infered))
inferred = list(map(lambda x: x.replace("\n", ""), temp))
#infered = list(map(lambda x: x.split(','), infers))
infers = pd.Series(inferred)
infersNew = infers.str.split(",", n=-1, expand=True)
print("USEAGE: ", response['usage']['completion_tokens'])
#infers.drop_duplicates(keep='first', inplace=True)
print("Infers DataType ", type(infers), "Infers after drop: ", infers, "Infers at 0: ", infers[0])
res = []
op1 = infersNew[0][0]
op2 = infersNew[1][0]
op3 = infersNew[2][0]
try:
op4 = infersNew[3][0]
except KeyError:
op4 = infersNew[0][1]
try:
op5 = infersNew[4][0]
except KeyError:
op5 = infersNew[1][1]
print("INFERS TYPE: ", type(infers), "INFERS ", infers)
convoState = latest
#infersStr = str(infers)
return transcript, op1, op2, op3, op4, op5, convoState
def appendPrediction(val, convoState):
convoState.append(val)
return convoState
# get audio from microphone
with gr.Blocks() as face:
with gr.Row():
convoState = gr.State([""])
with gr.Column():
audio = gr.Audio(source="microphone", type="filepath")
#promptText = gr.Textbox(lines=15, placeholder="Enter a prompt here")
#dropChoice = gr.Dropdown(choices=["text-ada-001", "text-davinci-002", "text-davinci-003", "gpt-3.5-turbo"], label="Model")
#sliderChoice = gr.Slider(minimum=0.0, maximum=1.0, default=0.8, step=0.1, label="Temperature")
transcribe_btn = gr.Button(value="Transcribe")
with gr.Column():
script = gr.Textbox(label="Transcribed text")
#options = gr.Textbox(label="Predictions")
option1 = gr.Button(value=" ")
option2 = gr.Button(value=" ")
option3 = gr.Button(value=" ")
option4 = gr.Button(value=" ")
option5 = gr.Button(value=" ")
#options = gr.Dataset(components=[gr.Radio], samples=["One", "Two", "Three", "Four", "Five"])
'''options = gr.Dataset(components=[gr.Textbox(visible=False)],
label="Text Dataset",
samples=[
["One"],
["Two"],
["Three"],
["Four"],
["Five"],
],
)'''
#options = gr.Radio(choices=["One", "Two", "Three", "Four", "Five"])
latestConvo = gr.Textbox(label="Running conversation")
#transcribe_btn.click(inference)
transcribe_btn.click(fn=inference, inputs=[audio, convoState], outputs=[script, option1, option2, option3, option4, option5, latestConvo])
option1.click(fn=appendPrediction, inputs=[option1, convoState], outputs=[latestConvo])
option2.click(fn=appendPrediction, inputs=[option2, convoState], outputs=[latestConvo])
option3.click(fn=appendPrediction, inputs=[option3, convoState], outputs=[latestConvo])
option4.click(fn=appendPrediction, inputs=[option4, convoState], outputs=[latestConvo])
option5.click(fn=appendPrediction, inputs=[option5, convoState], outputs=[latestConvo])
#examples = gr.Examples(examples=["Sedan, Truck, SUV", "Dalmaion, Shepherd, Lab, Mutt"], inputs=[options])
face.launch() |