Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,6 @@ from transformers import AutoModelForCausalLM
|
|
14 |
from transformers import AutoTokenizer
|
15 |
import time
|
16 |
|
17 |
-
convoState = gr.State([""])
|
18 |
|
19 |
EXAMPLE_PROMPT = """This is a tool for helping someone with memory issues remember the next word.
|
20 |
The predictions follow a few rules:
|
@@ -34,11 +33,33 @@ Transcript: I need to buy a birthday
|
|
34 |
Prediction: Present, Gift, Cake, Card
|
35 |
Transcript: """
|
36 |
|
|
|
37 |
# whisper model specification
|
38 |
asr_model = whisper.load_model("tiny")
|
39 |
|
40 |
openai.api_key = os.environ["Openai_APIkey"]
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# Transcribe function
|
43 |
def transcribe(audio_file):
|
44 |
print("Transcribing")
|
@@ -80,22 +101,6 @@ def inference(audio, prompt, model, temperature, latest):
|
|
80 |
return transcript, infers, convoState
|
81 |
|
82 |
|
83 |
-
|
84 |
-
with gr.Blocks() as face:
|
85 |
-
|
86 |
-
with gr.Row():
|
87 |
-
with gr.Column():
|
88 |
-
audio = gr.Audio(source="microphone", type="filepath")
|
89 |
-
promptText = gr.Textbox(lines=15, placeholder="Enter a prompt here")
|
90 |
-
dropChoice = gr.Dropdown(choices=["text-ada-001", "text-davinci-002", "text-davinci-003", "gpt-3.5-turbo"], label="Model")
|
91 |
-
sliderChoice = gr.Slider(minimum=0.0, maximum=1.0, default=0.8, step=0.1, label="Temperature")
|
92 |
-
transcribe_btn = gr.Button(value="Transcribe")
|
93 |
-
with gr.Column():
|
94 |
-
script = gr.Textbox(label="Transcribed text")
|
95 |
-
options = gr.Textbox(label="Predictions")
|
96 |
-
latestConvo = gr.Textbox(label="Running conversation")
|
97 |
-
#transcribe_btn.click(inference)
|
98 |
-
transcribe_btn.click(fn=inference, inputs=[audio, promptText, dropChoice, sliderChoice, convoState], outputs=[latestConvo, script, options])
|
99 |
-
examples = gr.Examples(examples=["Sedan, Truck, SUV", "Dalmaion, Shepherd, Lab, Mutt"], inputs=[options])
|
100 |
|
101 |
face.launch()
|
|
|
14 |
from transformers import AutoTokenizer
|
15 |
import time
|
16 |
|
|
|
17 |
|
18 |
EXAMPLE_PROMPT = """This is a tool for helping someone with memory issues remember the next word.
|
19 |
The predictions follow a few rules:
|
|
|
33 |
Prediction: Present, Gift, Cake, Card
|
34 |
Transcript: """
|
35 |
|
36 |
+
|
37 |
# whisper model specification
|
38 |
asr_model = whisper.load_model("tiny")
|
39 |
|
40 |
openai.api_key = os.environ["Openai_APIkey"]
|
41 |
|
42 |
+
|
43 |
+
# get audio from microphone
|
44 |
+
with gr.Blocks() as face:
|
45 |
+
|
46 |
+
with gr.Row():
|
47 |
+
convoState = gr.State([""])
|
48 |
+
with gr.Column():
|
49 |
+
audio = gr.Audio(source="microphone", type="filepath")
|
50 |
+
promptText = gr.Textbox(lines=15, placeholder="Enter a prompt here")
|
51 |
+
dropChoice = gr.Dropdown(choices=["text-ada-001", "text-davinci-002", "text-davinci-003", "gpt-3.5-turbo"], label="Model")
|
52 |
+
sliderChoice = gr.Slider(minimum=0.0, maximum=1.0, default=0.8, step=0.1, label="Temperature")
|
53 |
+
transcribe_btn = gr.Button(value="Transcribe")
|
54 |
+
with gr.Column():
|
55 |
+
script = gr.Textbox(label="Transcribed text")
|
56 |
+
options = gr.Textbox(label="Predictions")
|
57 |
+
latestConvo = gr.Textbox(label="Running conversation")
|
58 |
+
#transcribe_btn.click(inference)
|
59 |
+
transcribe_btn.click(fn=inference, inputs=[audio, promptText, dropChoice, sliderChoice, convoState], outputs=[latestConvo, script, options])
|
60 |
+
examples = gr.Examples(examples=["Sedan, Truck, SUV", "Dalmaion, Shepherd, Lab, Mutt"], inputs=[options])
|
61 |
+
|
62 |
+
|
63 |
# Transcribe function
|
64 |
def transcribe(audio_file):
|
65 |
print("Transcribing")
|
|
|
101 |
return transcript, infers, convoState
|
102 |
|
103 |
|
104 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
face.launch()
|