Spaces:
Runtime error
Runtime error
File size: 5,060 Bytes
fc004ff e29cd5a fc004ff d80aaed fc004ff 60020af fc004ff 8e87013 23a772a 8e87013 d80aaed 88300e6 d80aaed f1dffe0 8e87013 fc004ff d80aaed fc004ff 8e87013 fc004ff d80aaed fc004ff c1d76d0 fc004ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
os.system("pip install git+https://github.com/openai/whisper.git")
import whisper
import evaluate
from evaluate.utils import launch_gradio_widget
import gradio as gr
import torch
import pandas as pd
import random
import classify
from whisper.model import Whisper
from whisper.tokenizer import get_tokenizer
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
# pull in emotion detection
# --- Add element for specification
# pull in text classification
# --- Add custom labels
# --- Associate labels with radio elements
# add logic to initiate mock notificaiton when detected
# pull in misophonia-specific model
model_cache = {}
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own
class_options = {
"misophonia": ["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"]
}
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
def slider_logic(slider):
threshold = 0
if slider == 1:
threshold = .98
elif slider == 2:
threshold = .88
elif slider == 3:
threshold = .77
elif slider == 4:
threshold = .66
elif slider == 5:
threshold = .55
else:
threshold = []
return threshold
# Create a Gradio interface with audio file and text inputs
def classify_toxicity(audio_file, selected_sounds, slider):
# Transcribe the audio file using Whisper ASR
# transcribed_text = pipe(audio_file)["text"]
threshold = slider_logic(slider)
model = whisper.load_model("large")
# model = model_cache[model_name]
# class_names = classify_anxiety.split(",")
classify_anxiety = "misophonia"
class_names_list = class_options.get(classify_anxiety, [])
class_str = ""
for elm in class_names_list:
class_str += elm + ","
#class_names = class_names_temp.split(",")
class_names = class_str.split(",")
print("class names ", class_names, "classify_anxiety ", classify_anxiety)
tokenizer = get_tokenizer("large")
# tokenizer= WhisperTokenizer.from_pretrained("openai/whisper-large")
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
model=model,
class_names=class_names,
# class_names=classify_anxiety,
tokenizer=tokenizer,
)
audio_features = classify.calculate_audio_features(audio_file, model)
average_logprobs = classify.calculate_average_logprobs(
model=model,
audio_features=audio_features,
class_names=class_names,
tokenizer=tokenizer,
)
average_logprobs -= internal_lm_average_logprobs
scores = average_logprobs.softmax(-1).tolist()
class_score_dict = {class_name: score for class_name, score in zip(class_names, scores)}
for selected_class_name in selected_sounds:
if selected_class_name in class_score_dict:
score = class_score_dict[selected_class_name]
if score > threshold:
print(f"Threshold exceeded for class '{selected_class_name}': Score = {score:.4f}")
affirm = positive_affirmations()
else:
affirm = ""
'''
for class_name, score in class_score_dict.items():
if score > threshold:
print(f"Threshold exceeded for class '{class_name}': Score = {score:.4f}")
'''
holder1 = {class_name: score for class_name, score in zip(class_names, scores)}
# miso_label_dict = {label: score for label, score in classify_anxiety[0].items()}
holder2 = ""
holder3= " "
return {class_name: score for class_name, score in zip(class_names, scores)}, affirm
def positive_affirmations():
affirmations = [
"I have survived my anxiety before and I will survive again now",
"I am not in danger; I am just uncomfortable; this too will pass",
"I forgive and release the past and look forward to the future",
"I can't control what other people say but I can control my breathing and my response"
]
selected_affirm = random.choice(affirmations)
return selected_affirm
with gr.Blocks() as iface:
with gr.Column():
miso_sounds = gr.CheckboxGroup(["chewing", "breathing", "mouthsounds", "popping", "sneezing", "yawning", "smacking", "sniffling", "panting"])
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
with gr.Column():
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
submit_btn = gr.Button(label="Run")
with gr.Column():
# out_val = gr.Textbox()
out_class = gr.Label()
out_text = gr.Textbox()
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, miso_sounds, sense_slider], outputs=[out_class, out_text])
iface.launch() |