Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ import random
|
|
10 |
import classify
|
11 |
from whisper.model import Whisper
|
12 |
from whisper.tokenizer import get_tokenizer
|
13 |
-
from speechbrain.pretrained.interfaces import foreign_class
|
14 |
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
|
15 |
|
16 |
|
@@ -39,11 +38,7 @@ class_options = {
|
|
39 |
|
40 |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
41 |
|
42 |
-
|
43 |
-
#### Emotion classification ####
|
44 |
-
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
45 |
-
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio)
|
46 |
-
return emo_dict[text_lab[0]]
|
47 |
|
48 |
def slider_logic(slider):
|
49 |
threshold = 0
|
|
|
10 |
import classify
|
11 |
from whisper.model import Whisper
|
12 |
from whisper.tokenizer import get_tokenizer
|
|
|
13 |
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
|
14 |
|
15 |
|
|
|
38 |
|
39 |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
40 |
|
41 |
+
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def slider_logic(slider):
|
44 |
threshold = 0
|