mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import copy
import time
import torch
import logging
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict, List, Optional, Tuple
from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.model import Paraformer
from funasr_detach.models.paraformer.search import Hypothesis
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
@tables.register("model_classes", "BiCifParaformer")
class BiCifParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paper1: FunASR: A Fundamental End-to-End Speech Recognition Toolkit
https://arxiv.org/abs/2305.11013
Paper2: Achieving timestamp prediction while recognizing with non-autoregressive end-to-end ASR model
https://arxiv.org/abs/2301.12343
"""
def __init__(
self,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
def _calc_pre2_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
_, _, _, _, pre_token_length2 = self.predictor(
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
)
# loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
loss_pre2 = self.criterion_pre(
ys_pad_lens.type_as(pre_token_length2), pre_token_length2
)
return loss_pre2
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor(
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
)
# 0. sampler
decoder_out_1st = None
if self.sampling_ratio > 0.0:
sematic_embeds, decoder_out_1st = self.sampler(
encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds
)
else:
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(
ys_pad_lens.type_as(pre_token_length), pre_token_length
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
(
pre_acoustic_embeds,
pre_token_length,
alphas,
pre_peak_index,
pre_token_length2,
) = self.predictor(
encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id
)
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
encoder_out_mask = (
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
).to(encoder_out.device)
ds_alphas, ds_cif_peak, us_alphas, us_peaks = (
self.predictor.get_upsample_timestamp(
encoder_out, encoder_out_mask, token_num
)
)
return ds_alphas, ds_cif_peak, us_alphas, us_peaks
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
loss_ctc, cer_ctc = None, None
loss_pre = None
stats = dict()
# decoder: CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# decoder: Attention decoder branch
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss_pre2 = self._calc_pre2_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = (
loss_att
+ loss_pre * self.predictor_weight
+ loss_pre2 * self.predictor_weight * 0.5
)
else:
loss = (
self.ctc_weight * loss_ctc
+ (1 - self.ctc_weight) * loss_att
+ loss_pre * self.predictor_weight
+ loss_pre2 * self.predictor_weight * 0.5
)
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss_pre2"] = loss_pre2.detach().cpu()
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((text_lengths + self.predictor_bias).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
# init beamsearch
is_use_ctc = (
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
)
is_use_lm = (
kwargs.get("lm_weight", 0.0) > 0.00001
and kwargs.get("lm_file", None) is not None
)
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
# if isinstance(data_in, torch.Tensor): # fbank
# speech, speech_lengths = data_in, data_lengths
# if len(speech.shape) < 3:
# speech = speech[None, :, :]
# if speech_lengths is None:
# speech_lengths = speech.shape[1]
# else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(
data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000)
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(
audio_sample_list,
data_type=kwargs.get("data_type", "sound"),
frontend=frontend,
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = (
predictor_outs[0],
predictor_outs[1],
predictor_outs[2],
predictor_outs[3],
)
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
decoder_outs = self.cal_decoder_with_predictor(
encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length
)
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
# BiCifParaformer, test no bias cif2
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp(
encoder_out, encoder_out_lens, pre_token_length
)
results = []
b, n, d = decoder_out.size()
for i in range(b):
x = encoder_out[i, : encoder_out_lens[i], :]
am_scores = decoder_out[i, : pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x,
am_scores=am_scores,
maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0),
)
nbest_hyps = nbest_hyps[: self.nbest]
else:
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor(
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device
)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{nbest_idx+1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(
lambda x: x != self.eos
and x != self.sos
and x != self.blank_id,
token_int,
)
)
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
_, timestamp = ts_prediction_lfr6_standard(
us_alphas[i][: encoder_out_lens[i] * 3],
us_peaks[i][: encoder_out_lens[i] * 3],
copy.copy(token),
vad_offset=kwargs.get("begin_time", 0),
)
text_postprocessed, time_stamp_postprocessed, word_lists = (
postprocess_utils.sentence_postprocess(token, timestamp)
)
result_i = {
"key": key[i],
"text": text_postprocessed,
"timestamp": time_stamp_postprocessed,
}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
# ibest_writer["text"][key[i]] = text
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
ibest_writer["text"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data