Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import copy | |
import time | |
import torch | |
import logging | |
from contextlib import contextmanager | |
from distutils.version import LooseVersion | |
from typing import Dict, List, Optional, Tuple | |
from funasr_detach.register import tables | |
from funasr_detach.models.ctc.ctc import CTC | |
from funasr_detach.utils import postprocess_utils | |
from funasr_detach.metrics.compute_acc import th_accuracy | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.models.paraformer.model import Paraformer | |
from funasr_detach.models.paraformer.search import Hypothesis | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
from funasr_detach.utils.timestamp_tools import ts_prediction_lfr6_standard | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
from torch.cuda.amp import autocast | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
class BiCifParaformer(Paraformer): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Paper1: FunASR: A Fundamental End-to-End Speech Recognition Toolkit | |
https://arxiv.org/abs/2305.11013 | |
Paper2: Achieving timestamp prediction while recognizing with non-autoregressive end-to-end ASR model | |
https://arxiv.org/abs/2301.12343 | |
""" | |
def __init__( | |
self, | |
*args, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
def _calc_pre2_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
if self.predictor_bias == 1: | |
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_pad_lens = ys_pad_lens + self.predictor_bias | |
_, _, _, _, pre_token_length2 = self.predictor( | |
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id | |
) | |
# loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) | |
loss_pre2 = self.criterion_pre( | |
ys_pad_lens.type_as(pre_token_length2), pre_token_length2 | |
) | |
return loss_pre2 | |
def _calc_att_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
if self.predictor_bias == 1: | |
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_pad_lens = ys_pad_lens + self.predictor_bias | |
pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor( | |
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id | |
) | |
# 0. sampler | |
decoder_out_1st = None | |
if self.sampling_ratio > 0.0: | |
sematic_embeds, decoder_out_1st = self.sampler( | |
encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds | |
) | |
else: | |
sematic_embeds = pre_acoustic_embeds | |
# 1. Forward decoder | |
decoder_outs = self.decoder( | |
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens | |
) | |
decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
if decoder_out_1st is None: | |
decoder_out_1st = decoder_out | |
# 2. Compute attention loss | |
loss_att = self.criterion_att(decoder_out, ys_pad) | |
acc_att = th_accuracy( | |
decoder_out_1st.view(-1, self.vocab_size), | |
ys_pad, | |
ignore_label=self.ignore_id, | |
) | |
loss_pre = self.criterion_pre( | |
ys_pad_lens.type_as(pre_token_length), pre_token_length | |
) | |
# Compute cer/wer using attention-decoder | |
if self.training or self.error_calculator is None: | |
cer_att, wer_att = None, None | |
else: | |
ys_hat = decoder_out_1st.argmax(dim=-1) | |
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
return loss_att, acc_att, cer_att, wer_att, loss_pre | |
def calc_predictor(self, encoder_out, encoder_out_lens): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
( | |
pre_acoustic_embeds, | |
pre_token_length, | |
alphas, | |
pre_peak_index, | |
pre_token_length2, | |
) = self.predictor( | |
encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id | |
) | |
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index | |
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num): | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
ds_alphas, ds_cif_peak, us_alphas, us_peaks = ( | |
self.predictor.get_upsample_timestamp( | |
encoder_out, encoder_out_mask, token_num | |
) | |
) | |
return ds_alphas, ds_cif_peak, us_alphas, us_peaks | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Frontend + Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
if len(text_lengths.size()) > 1: | |
text_lengths = text_lengths[:, 0] | |
if len(speech_lengths.size()) > 1: | |
speech_lengths = speech_lengths[:, 0] | |
batch_size = speech.shape[0] | |
# Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
loss_ctc, cer_ctc = None, None | |
loss_pre = None | |
stats = dict() | |
# decoder: CTC branch | |
if self.ctc_weight != 0.0: | |
loss_ctc, cer_ctc = self._calc_ctc_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
# Collect CTC branch stats | |
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None | |
stats["cer_ctc"] = cer_ctc | |
# decoder: Attention decoder branch | |
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
loss_pre2 = self._calc_pre2_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
# 3. CTC-Att loss definition | |
if self.ctc_weight == 0.0: | |
loss = ( | |
loss_att | |
+ loss_pre * self.predictor_weight | |
+ loss_pre2 * self.predictor_weight * 0.5 | |
) | |
else: | |
loss = ( | |
self.ctc_weight * loss_ctc | |
+ (1 - self.ctc_weight) * loss_att | |
+ loss_pre * self.predictor_weight | |
+ loss_pre2 * self.predictor_weight * 0.5 | |
) | |
# Collect Attn branch stats | |
stats["loss_att"] = loss_att.detach() if loss_att is not None else None | |
stats["acc"] = acc_att | |
stats["cer"] = cer_att | |
stats["wer"] = wer_att | |
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None | |
stats["loss_pre2"] = loss_pre2.detach().cpu() | |
stats["loss"] = torch.clone(loss.detach()) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
if self.length_normalized_loss: | |
batch_size = int((text_lengths + self.predictor_bias).sum()) | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
**kwargs, | |
): | |
# init beamsearch | |
is_use_ctc = ( | |
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
) | |
is_use_lm = ( | |
kwargs.get("lm_weight", 0.0) > 0.00001 | |
and kwargs.get("lm_file", None) is not None | |
) | |
if self.beam_search is None and (is_use_lm or is_use_ctc): | |
logging.info("enable beam_search") | |
self.init_beam_search(**kwargs) | |
self.nbest = kwargs.get("nbest", 1) | |
meta_data = {} | |
# if isinstance(data_in, torch.Tensor): # fbank | |
# speech, speech_lengths = data_in, data_lengths | |
# if len(speech.shape) < 3: | |
# speech = speech[None, :, :] | |
# if speech_lengths is None: | |
# speech_lengths = speech.shape[1] | |
# else: | |
# extract fbank feats | |
time1 = time.perf_counter() | |
audio_sample_list = load_audio_text_image_video( | |
data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000) | |
) | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
speech, speech_lengths = extract_fbank( | |
audio_sample_list, | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
# Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
# predictor | |
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) | |
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( | |
predictor_outs[0], | |
predictor_outs[1], | |
predictor_outs[2], | |
predictor_outs[3], | |
) | |
pre_token_length = pre_token_length.round().long() | |
if torch.max(pre_token_length) < 1: | |
return [] | |
decoder_outs = self.cal_decoder_with_predictor( | |
encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length | |
) | |
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1] | |
# BiCifParaformer, test no bias cif2 | |
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp( | |
encoder_out, encoder_out_lens, pre_token_length | |
) | |
results = [] | |
b, n, d = decoder_out.size() | |
for i in range(b): | |
x = encoder_out[i, : encoder_out_lens[i], :] | |
am_scores = decoder_out[i, : pre_token_length[i], :] | |
if self.beam_search is not None: | |
nbest_hyps = self.beam_search( | |
x=x, | |
am_scores=am_scores, | |
maxlenratio=kwargs.get("maxlenratio", 0.0), | |
minlenratio=kwargs.get("minlenratio", 0.0), | |
) | |
nbest_hyps = nbest_hyps[: self.nbest] | |
else: | |
yseq = am_scores.argmax(dim=-1) | |
score = am_scores.max(dim=-1)[0] | |
score = torch.sum(score, dim=-1) | |
# pad with mask tokens to ensure compatibility with sos/eos tokens | |
yseq = torch.tensor( | |
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device | |
) | |
nbest_hyps = [Hypothesis(yseq=yseq, score=score)] | |
for nbest_idx, hyp in enumerate(nbest_hyps): | |
ibest_writer = None | |
if kwargs.get("output_dir") is not None: | |
if not hasattr(self, "writer"): | |
self.writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = self.writer[f"{nbest_idx+1}best_recog"] | |
# remove sos/eos and get results | |
last_pos = -1 | |
if isinstance(hyp.yseq, list): | |
token_int = hyp.yseq[1:last_pos] | |
else: | |
token_int = hyp.yseq[1:last_pos].tolist() | |
# remove blank symbol id, which is assumed to be 0 | |
token_int = list( | |
filter( | |
lambda x: x != self.eos | |
and x != self.sos | |
and x != self.blank_id, | |
token_int, | |
) | |
) | |
if tokenizer is not None: | |
# Change integer-ids to tokens | |
token = tokenizer.ids2tokens(token_int) | |
text = tokenizer.tokens2text(token) | |
_, timestamp = ts_prediction_lfr6_standard( | |
us_alphas[i][: encoder_out_lens[i] * 3], | |
us_peaks[i][: encoder_out_lens[i] * 3], | |
copy.copy(token), | |
vad_offset=kwargs.get("begin_time", 0), | |
) | |
text_postprocessed, time_stamp_postprocessed, word_lists = ( | |
postprocess_utils.sentence_postprocess(token, timestamp) | |
) | |
result_i = { | |
"key": key[i], | |
"text": text_postprocessed, | |
"timestamp": time_stamp_postprocessed, | |
} | |
if ibest_writer is not None: | |
ibest_writer["token"][key[i]] = " ".join(token) | |
# ibest_writer["text"][key[i]] = text | |
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed | |
ibest_writer["text"][key[i]] = text_postprocessed | |
else: | |
result_i = {"key": key[i], "token_int": token_int} | |
results.append(result_i) | |
return results, meta_data | |