File size: 14,845 Bytes
0102e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
#  MIT License  (https://opensource.org/licenses/MIT)

import copy
import time
import torch
import logging
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict, List, Optional, Tuple

from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.model import Paraformer
from funasr_detach.models.paraformer.search import Hypothesis
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank


if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
    from torch.cuda.amp import autocast
else:
    # Nothing to do if torch<1.6.0
    @contextmanager
    def autocast(enabled=True):
        yield


@tables.register("model_classes", "BiCifParaformer")
class BiCifParaformer(Paraformer):
    """
    Author: Speech Lab of DAMO Academy, Alibaba Group
    Paper1: FunASR: A Fundamental End-to-End Speech Recognition Toolkit
    https://arxiv.org/abs/2305.11013
    Paper2: Achieving timestamp prediction while recognizing with non-autoregressive end-to-end ASR model
    https://arxiv.org/abs/2301.12343
    """

    def __init__(
        self,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)

    def _calc_pre2_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        encoder_out_mask = (
            ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
        ).to(encoder_out.device)
        if self.predictor_bias == 1:
            _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
            ys_pad_lens = ys_pad_lens + self.predictor_bias
        _, _, _, _, pre_token_length2 = self.predictor(
            encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
        )

        # loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
        loss_pre2 = self.criterion_pre(
            ys_pad_lens.type_as(pre_token_length2), pre_token_length2
        )

        return loss_pre2

    def _calc_att_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_out_lens: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
    ):
        encoder_out_mask = (
            ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
        ).to(encoder_out.device)
        if self.predictor_bias == 1:
            _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
            ys_pad_lens = ys_pad_lens + self.predictor_bias
        pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor(
            encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id
        )

        # 0. sampler
        decoder_out_1st = None
        if self.sampling_ratio > 0.0:
            sematic_embeds, decoder_out_1st = self.sampler(
                encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds
            )
        else:
            sematic_embeds = pre_acoustic_embeds

        # 1. Forward decoder
        decoder_outs = self.decoder(
            encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
        )
        decoder_out, _ = decoder_outs[0], decoder_outs[1]

        if decoder_out_1st is None:
            decoder_out_1st = decoder_out
        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_pad)
        acc_att = th_accuracy(
            decoder_out_1st.view(-1, self.vocab_size),
            ys_pad,
            ignore_label=self.ignore_id,
        )
        loss_pre = self.criterion_pre(
            ys_pad_lens.type_as(pre_token_length), pre_token_length
        )

        # Compute cer/wer using attention-decoder
        if self.training or self.error_calculator is None:
            cer_att, wer_att = None, None
        else:
            ys_hat = decoder_out_1st.argmax(dim=-1)
            cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())

        return loss_att, acc_att, cer_att, wer_att, loss_pre

    def calc_predictor(self, encoder_out, encoder_out_lens):
        encoder_out_mask = (
            ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
        ).to(encoder_out.device)
        (
            pre_acoustic_embeds,
            pre_token_length,
            alphas,
            pre_peak_index,
            pre_token_length2,
        ) = self.predictor(
            encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id
        )
        return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index

    def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
        encoder_out_mask = (
            ~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]
        ).to(encoder_out.device)
        ds_alphas, ds_cif_peak, us_alphas, us_peaks = (
            self.predictor.get_upsample_timestamp(
                encoder_out, encoder_out_mask, token_num
            )
        )
        return ds_alphas, ds_cif_peak, us_alphas, us_peaks

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
        **kwargs,
    ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
        """Frontend + Encoder + Decoder + Calc loss
        Args:
                speech: (Batch, Length, ...)
                speech_lengths: (Batch, )
                text: (Batch, Length)
                text_lengths: (Batch,)
        """
        if len(text_lengths.size()) > 1:
            text_lengths = text_lengths[:, 0]
        if len(speech_lengths.size()) > 1:
            speech_lengths = speech_lengths[:, 0]

        batch_size = speech.shape[0]

        # Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)

        loss_ctc, cer_ctc = None, None
        loss_pre = None
        stats = dict()

        # decoder: CTC branch
        if self.ctc_weight != 0.0:
            loss_ctc, cer_ctc = self._calc_ctc_loss(
                encoder_out, encoder_out_lens, text, text_lengths
            )

            # Collect CTC branch stats
            stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
            stats["cer_ctc"] = cer_ctc

        # decoder: Attention decoder branch
        loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
            encoder_out, encoder_out_lens, text, text_lengths
        )

        loss_pre2 = self._calc_pre2_loss(
            encoder_out, encoder_out_lens, text, text_lengths
        )

        # 3. CTC-Att loss definition
        if self.ctc_weight == 0.0:
            loss = (
                loss_att
                + loss_pre * self.predictor_weight
                + loss_pre2 * self.predictor_weight * 0.5
            )
        else:
            loss = (
                self.ctc_weight * loss_ctc
                + (1 - self.ctc_weight) * loss_att
                + loss_pre * self.predictor_weight
                + loss_pre2 * self.predictor_weight * 0.5
            )

        # Collect Attn branch stats
        stats["loss_att"] = loss_att.detach() if loss_att is not None else None
        stats["acc"] = acc_att
        stats["cer"] = cer_att
        stats["wer"] = wer_att
        stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
        stats["loss_pre2"] = loss_pre2.detach().cpu()

        stats["loss"] = torch.clone(loss.detach())

        # force_gatherable: to-device and to-tensor if scalar for DataParallel
        if self.length_normalized_loss:
            batch_size = int((text_lengths + self.predictor_bias).sum())

        loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
        return loss, stats, weight

    def inference(
        self,
        data_in,
        data_lengths=None,
        key: list = None,
        tokenizer=None,
        frontend=None,
        **kwargs,
    ):

        # init beamsearch
        is_use_ctc = (
            kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
        )
        is_use_lm = (
            kwargs.get("lm_weight", 0.0) > 0.00001
            and kwargs.get("lm_file", None) is not None
        )
        if self.beam_search is None and (is_use_lm or is_use_ctc):
            logging.info("enable beam_search")
            self.init_beam_search(**kwargs)
            self.nbest = kwargs.get("nbest", 1)

        meta_data = {}
        # if isinstance(data_in, torch.Tensor):  # fbank
        #     speech, speech_lengths = data_in, data_lengths
        #     if len(speech.shape) < 3:
        #         speech = speech[None, :, :]
        #     if speech_lengths is None:
        #         speech_lengths = speech.shape[1]
        # else:
        # extract fbank feats
        time1 = time.perf_counter()
        audio_sample_list = load_audio_text_image_video(
            data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000)
        )
        time2 = time.perf_counter()
        meta_data["load_data"] = f"{time2 - time1:0.3f}"
        speech, speech_lengths = extract_fbank(
            audio_sample_list,
            data_type=kwargs.get("data_type", "sound"),
            frontend=frontend,
        )
        time3 = time.perf_counter()
        meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
        meta_data["batch_data_time"] = (
            speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
        )

        speech = speech.to(device=kwargs["device"])
        speech_lengths = speech_lengths.to(device=kwargs["device"])

        # Encoder
        encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
        if isinstance(encoder_out, tuple):
            encoder_out = encoder_out[0]

        # predictor
        predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
        pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = (
            predictor_outs[0],
            predictor_outs[1],
            predictor_outs[2],
            predictor_outs[3],
        )
        pre_token_length = pre_token_length.round().long()
        if torch.max(pre_token_length) < 1:
            return []
        decoder_outs = self.cal_decoder_with_predictor(
            encoder_out, encoder_out_lens, pre_acoustic_embeds, pre_token_length
        )
        decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]

        # BiCifParaformer, test no bias cif2
        _, _, us_alphas, us_peaks = self.calc_predictor_timestamp(
            encoder_out, encoder_out_lens, pre_token_length
        )

        results = []
        b, n, d = decoder_out.size()
        for i in range(b):
            x = encoder_out[i, : encoder_out_lens[i], :]
            am_scores = decoder_out[i, : pre_token_length[i], :]
            if self.beam_search is not None:
                nbest_hyps = self.beam_search(
                    x=x,
                    am_scores=am_scores,
                    maxlenratio=kwargs.get("maxlenratio", 0.0),
                    minlenratio=kwargs.get("minlenratio", 0.0),
                )

                nbest_hyps = nbest_hyps[: self.nbest]
            else:

                yseq = am_scores.argmax(dim=-1)
                score = am_scores.max(dim=-1)[0]
                score = torch.sum(score, dim=-1)
                # pad with mask tokens to ensure compatibility with sos/eos tokens
                yseq = torch.tensor(
                    [self.sos] + yseq.tolist() + [self.eos], device=yseq.device
                )
                nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
            for nbest_idx, hyp in enumerate(nbest_hyps):
                ibest_writer = None
                if kwargs.get("output_dir") is not None:
                    if not hasattr(self, "writer"):
                        self.writer = DatadirWriter(kwargs.get("output_dir"))
                    ibest_writer = self.writer[f"{nbest_idx+1}best_recog"]

                # remove sos/eos and get results
                last_pos = -1
                if isinstance(hyp.yseq, list):
                    token_int = hyp.yseq[1:last_pos]
                else:
                    token_int = hyp.yseq[1:last_pos].tolist()

                # remove blank symbol id, which is assumed to be 0
                token_int = list(
                    filter(
                        lambda x: x != self.eos
                        and x != self.sos
                        and x != self.blank_id,
                        token_int,
                    )
                )

                if tokenizer is not None:
                    # Change integer-ids to tokens
                    token = tokenizer.ids2tokens(token_int)
                    text = tokenizer.tokens2text(token)

                    _, timestamp = ts_prediction_lfr6_standard(
                        us_alphas[i][: encoder_out_lens[i] * 3],
                        us_peaks[i][: encoder_out_lens[i] * 3],
                        copy.copy(token),
                        vad_offset=kwargs.get("begin_time", 0),
                    )

                    text_postprocessed, time_stamp_postprocessed, word_lists = (
                        postprocess_utils.sentence_postprocess(token, timestamp)
                    )

                    result_i = {
                        "key": key[i],
                        "text": text_postprocessed,
                        "timestamp": time_stamp_postprocessed,
                    }

                    if ibest_writer is not None:
                        ibest_writer["token"][key[i]] = " ".join(token)
                        # ibest_writer["text"][key[i]] = text
                        ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
                        ibest_writer["text"][key[i]] = text_postprocessed
                else:
                    result_i = {"key": key[i], "token_int": token_int}
                results.append(result_i)

        return results, meta_data