Spaces:
Running
on
Zero
Running
on
Zero
# training script. | |
import os | |
from importlib.resources import files | |
import hydra | |
from omegaconf import OmegaConf | |
from f5_tts.model import CFM, Trainer | |
from f5_tts.model.dataset import load_dataset | |
from f5_tts.model.utils import get_tokenizer | |
os.chdir(str(files("f5_tts").joinpath("../.."))) # change working directory to root of project (local editable) | |
def main(model_cfg): | |
model_cls = hydra.utils.get_class(f"f5_tts.model.{model_cfg.model.backbone}") | |
model_arc = model_cfg.model.arch | |
tokenizer = model_cfg.model.tokenizer | |
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type | |
exp_name = f"{model_cfg.model.name}_{mel_spec_type}_{model_cfg.model.tokenizer}_{model_cfg.datasets.name}" | |
wandb_resume_id = None | |
# set text tokenizer | |
if tokenizer != "custom": | |
tokenizer_path = model_cfg.datasets.name | |
else: | |
tokenizer_path = model_cfg.model.tokenizer_path | |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) | |
# set model | |
model = CFM( | |
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=model_cfg.model.mel_spec.n_mel_channels), | |
mel_spec_kwargs=model_cfg.model.mel_spec, | |
vocab_char_map=vocab_char_map, | |
) | |
# init trainer | |
trainer = Trainer( | |
model, | |
epochs=model_cfg.optim.epochs, | |
learning_rate=model_cfg.optim.learning_rate, | |
num_warmup_updates=model_cfg.optim.num_warmup_updates, | |
save_per_updates=model_cfg.ckpts.save_per_updates, | |
keep_last_n_checkpoints=model_cfg.ckpts.keep_last_n_checkpoints, | |
checkpoint_path=str(files("f5_tts").joinpath(f"../../{model_cfg.ckpts.save_dir}")), | |
batch_size_per_gpu=model_cfg.datasets.batch_size_per_gpu, | |
batch_size_type=model_cfg.datasets.batch_size_type, | |
max_samples=model_cfg.datasets.max_samples, | |
grad_accumulation_steps=model_cfg.optim.grad_accumulation_steps, | |
max_grad_norm=model_cfg.optim.max_grad_norm, | |
logger=model_cfg.ckpts.logger, | |
wandb_project="CFM-TTS", | |
wandb_run_name=exp_name, | |
wandb_resume_id=wandb_resume_id, | |
last_per_updates=model_cfg.ckpts.last_per_updates, | |
log_samples=model_cfg.ckpts.log_samples, | |
bnb_optimizer=model_cfg.optim.bnb_optimizer, | |
mel_spec_type=mel_spec_type, | |
is_local_vocoder=model_cfg.model.vocoder.is_local, | |
local_vocoder_path=model_cfg.model.vocoder.local_path, | |
model_cfg_dict=OmegaConf.to_container(model_cfg, resolve=True), | |
) | |
train_dataset = load_dataset(model_cfg.datasets.name, tokenizer, mel_spec_kwargs=model_cfg.model.mel_spec) | |
trainer.train( | |
train_dataset, | |
num_workers=model_cfg.datasets.num_workers, | |
resumable_with_seed=666, # seed for shuffling dataset | |
) | |
if __name__ == "__main__": | |
main() | |