mrfakename's picture
Sync from GitHub repo
43bc5dc verified
# training script.
import os
from importlib.resources import files
import hydra
from omegaconf import OmegaConf
from f5_tts.model import CFM, Trainer
from f5_tts.model.dataset import load_dataset
from f5_tts.model.utils import get_tokenizer
os.chdir(str(files("f5_tts").joinpath("../.."))) # change working directory to root of project (local editable)
@hydra.main(version_base="1.3", config_path=str(files("f5_tts").joinpath("configs")), config_name=None)
def main(model_cfg):
model_cls = hydra.utils.get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
tokenizer = model_cfg.model.tokenizer
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
exp_name = f"{model_cfg.model.name}_{mel_spec_type}_{model_cfg.model.tokenizer}_{model_cfg.datasets.name}"
wandb_resume_id = None
# set text tokenizer
if tokenizer != "custom":
tokenizer_path = model_cfg.datasets.name
else:
tokenizer_path = model_cfg.model.tokenizer_path
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
# set model
model = CFM(
transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=model_cfg.model.mel_spec.n_mel_channels),
mel_spec_kwargs=model_cfg.model.mel_spec,
vocab_char_map=vocab_char_map,
)
# init trainer
trainer = Trainer(
model,
epochs=model_cfg.optim.epochs,
learning_rate=model_cfg.optim.learning_rate,
num_warmup_updates=model_cfg.optim.num_warmup_updates,
save_per_updates=model_cfg.ckpts.save_per_updates,
keep_last_n_checkpoints=model_cfg.ckpts.keep_last_n_checkpoints,
checkpoint_path=str(files("f5_tts").joinpath(f"../../{model_cfg.ckpts.save_dir}")),
batch_size_per_gpu=model_cfg.datasets.batch_size_per_gpu,
batch_size_type=model_cfg.datasets.batch_size_type,
max_samples=model_cfg.datasets.max_samples,
grad_accumulation_steps=model_cfg.optim.grad_accumulation_steps,
max_grad_norm=model_cfg.optim.max_grad_norm,
logger=model_cfg.ckpts.logger,
wandb_project="CFM-TTS",
wandb_run_name=exp_name,
wandb_resume_id=wandb_resume_id,
last_per_updates=model_cfg.ckpts.last_per_updates,
log_samples=model_cfg.ckpts.log_samples,
bnb_optimizer=model_cfg.optim.bnb_optimizer,
mel_spec_type=mel_spec_type,
is_local_vocoder=model_cfg.model.vocoder.is_local,
local_vocoder_path=model_cfg.model.vocoder.local_path,
model_cfg_dict=OmegaConf.to_container(model_cfg, resolve=True),
)
train_dataset = load_dataset(model_cfg.datasets.name, tokenizer, mel_spec_kwargs=model_cfg.model.mel_spec)
trainer.train(
train_dataset,
num_workers=model_cfg.datasets.num_workers,
resumable_with_seed=666, # seed for shuffling dataset
)
if __name__ == "__main__":
main()