# training script. import os from importlib.resources import files import hydra from omegaconf import OmegaConf from f5_tts.model import CFM, Trainer from f5_tts.model.dataset import load_dataset from f5_tts.model.utils import get_tokenizer os.chdir(str(files("f5_tts").joinpath("../.."))) # change working directory to root of project (local editable) @hydra.main(version_base="1.3", config_path=str(files("f5_tts").joinpath("configs")), config_name=None) def main(model_cfg): model_cls = hydra.utils.get_class(f"f5_tts.model.{model_cfg.model.backbone}") model_arc = model_cfg.model.arch tokenizer = model_cfg.model.tokenizer mel_spec_type = model_cfg.model.mel_spec.mel_spec_type exp_name = f"{model_cfg.model.name}_{mel_spec_type}_{model_cfg.model.tokenizer}_{model_cfg.datasets.name}" wandb_resume_id = None # set text tokenizer if tokenizer != "custom": tokenizer_path = model_cfg.datasets.name else: tokenizer_path = model_cfg.model.tokenizer_path vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) # set model model = CFM( transformer=model_cls(**model_arc, text_num_embeds=vocab_size, mel_dim=model_cfg.model.mel_spec.n_mel_channels), mel_spec_kwargs=model_cfg.model.mel_spec, vocab_char_map=vocab_char_map, ) # init trainer trainer = Trainer( model, epochs=model_cfg.optim.epochs, learning_rate=model_cfg.optim.learning_rate, num_warmup_updates=model_cfg.optim.num_warmup_updates, save_per_updates=model_cfg.ckpts.save_per_updates, keep_last_n_checkpoints=model_cfg.ckpts.keep_last_n_checkpoints, checkpoint_path=str(files("f5_tts").joinpath(f"../../{model_cfg.ckpts.save_dir}")), batch_size_per_gpu=model_cfg.datasets.batch_size_per_gpu, batch_size_type=model_cfg.datasets.batch_size_type, max_samples=model_cfg.datasets.max_samples, grad_accumulation_steps=model_cfg.optim.grad_accumulation_steps, max_grad_norm=model_cfg.optim.max_grad_norm, logger=model_cfg.ckpts.logger, wandb_project="CFM-TTS", wandb_run_name=exp_name, wandb_resume_id=wandb_resume_id, last_per_updates=model_cfg.ckpts.last_per_updates, log_samples=model_cfg.ckpts.log_samples, bnb_optimizer=model_cfg.optim.bnb_optimizer, mel_spec_type=mel_spec_type, is_local_vocoder=model_cfg.model.vocoder.is_local, local_vocoder_path=model_cfg.model.vocoder.local_path, model_cfg_dict=OmegaConf.to_container(model_cfg, resolve=True), ) train_dataset = load_dataset(model_cfg.datasets.name, tokenizer, mel_spec_kwargs=model_cfg.model.mel_spec) trainer.train( train_dataset, num_workers=model_cfg.datasets.num_workers, resumable_with_seed=666, # seed for shuffling dataset ) if __name__ == "__main__": main()