Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from diffusers import I2VGenXLPipeline | |
from diffusers.utils import export_to_gif, load_image | |
import tempfile | |
def initialize_pipeline(): | |
# Initialize the pipeline without CUDA support | |
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16") | |
return pipeline | |
def generate_gif(prompt, image, negative_prompt, num_inference_steps, guidance_scale, seed): | |
# Initialize the pipeline within the function | |
pipeline = initialize_pipeline() | |
# Set the generator seed | |
generator = torch.Generator().manual_seed(seed) | |
# Check if an image is provided | |
if image is not None: | |
image = load_image(image).convert("RGB") | |
frames = pipeline( | |
prompt=prompt, | |
image=image, | |
num_inference_steps=num_inference_steps, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).frames[0] | |
else: | |
frames = pipeline( | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).frames[0] | |
# Export to GIF | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".gif") as tmp_gif: | |
gif_path = tmp_gif.name | |
export_to_gif(frames, gif_path) | |
return gif_path | |
# Create the Gradio interface with tabs | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.TabItem("Generate from Text"): | |
with gr.Row(): | |
with gr.Column(): | |
text_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt") | |
text_negative_prompt = gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt") | |
text_num_inference_steps = gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps") | |
text_guidance_scale = gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale") | |
text_seed = gr.Number(label="Seed", value=8888) | |
text_generate_button = gr.Button("Generate GIF") | |
with gr.Column(): | |
text_output_video = gr.Video(label="Generated GIF") | |
text_generate_button.click( | |
fn=generate_gif, | |
inputs=[text_prompt, None, text_negative_prompt, text_num_inference_steps, text_guidance_scale, text_seed], | |
outputs=text_output_video | |
) | |
with gr.TabItem("Generate from Image"): | |
with gr.Row(): | |
with gr.Column(): | |
image_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt") | |
image_input = gr.Image(type="filepath", label="Input Image") | |
image_negative_prompt = gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt") | |
image_num_inference_steps = gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps") | |
image_guidance_scale = gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale") | |
image_seed = gr.Number(label="Seed", value=8888) | |
image_generate_button = gr.Button("Generate GIF") | |
with gr.Column(): | |
image_output_video = gr.Video(label="Generated GIF") | |
image_generate_button.click( | |
fn=generate_gif, | |
inputs=[image_prompt, image_input, image_negative_prompt, image_num_inference_steps, image_guidance_scale, image_seed], | |
outputs=image_output_video | |
) | |
# Launch the interface | |
demo.launch() | |