Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,834 Bytes
b7f7bb6 fe77a8e b7f7bb6 4c34823 d03a679 7d2b140 b7f7bb6 30a8deb 7d2b140 4c34823 30a8deb b7f7bb6 4c34823 fe77a8e b7f7bb6 fe77a8e b7f7bb6 fe77a8e d03a679 c7d5c0d d03a679 c7d5c0d d03a679 c7d5c0d 4c34823 c7d5c0d 1f6711e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
import torch
from diffusers import I2VGenXLPipeline
from diffusers.utils import export_to_gif, load_image
import tempfile
def initialize_pipeline():
# Initialize the pipeline without CUDA support
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
return pipeline
def generate_gif(prompt, image, negative_prompt, num_inference_steps, guidance_scale, seed):
# Initialize the pipeline within the function
pipeline = initialize_pipeline()
# Set the generator seed
generator = torch.Generator().manual_seed(seed)
# Check if an image is provided
if image is not None:
image = load_image(image).convert("RGB")
frames = pipeline(
prompt=prompt,
image=image,
num_inference_steps=num_inference_steps,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
generator=generator
).frames[0]
else:
frames = pipeline(
prompt=prompt,
num_inference_steps=num_inference_steps,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
generator=generator
).frames[0]
# Export to GIF
with tempfile.NamedTemporaryFile(delete=False, suffix=".gif") as tmp_gif:
gif_path = tmp_gif.name
export_to_gif(frames, gif_path)
return gif_path
# Create the Gradio interface with tabs
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Generate from Text"):
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
text_negative_prompt = gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt")
text_num_inference_steps = gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps")
text_guidance_scale = gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale")
text_seed = gr.Number(label="Seed", value=8888)
text_generate_button = gr.Button("Generate GIF")
with gr.Column():
text_output_video = gr.Video(label="Generated GIF")
text_generate_button.click(
fn=generate_gif,
inputs=[text_prompt, None, text_negative_prompt, text_num_inference_steps, text_guidance_scale, text_seed],
outputs=text_output_video
)
with gr.TabItem("Generate from Image"):
with gr.Row():
with gr.Column():
image_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
image_input = gr.Image(type="filepath", label="Input Image")
image_negative_prompt = gr.Textbox(lines=2, placeholder="Enter your negative prompt here...", label="Negative Prompt")
image_num_inference_steps = gr.Slider(1, 100, step=1, value=50, label="Number of Inference Steps")
image_guidance_scale = gr.Slider(1, 20, step=0.1, value=9.0, label="Guidance Scale")
image_seed = gr.Number(label="Seed", value=8888)
image_generate_button = gr.Button("Generate GIF")
with gr.Column():
image_output_video = gr.Video(label="Generated GIF")
image_generate_button.click(
fn=generate_gif,
inputs=[image_prompt, image_input, image_negative_prompt, image_num_inference_steps, image_guidance_scale, image_seed],
outputs=image_output_video
)
# Launch the interface
demo.launch()
|