captain1-1 / app.py
mrbeliever's picture
Update app.py
15923f1 verified
raw
history blame
2.97 kB
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoProcessor
import torch
from PIL import Image
import subprocess
# Install flash-attn with no CUDA build isolation
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load model and processor
models = {
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
}
processors = {
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
}
# Default description and prompt
DESCRIPTION = ""
default_question = "You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 100 words."
# Gradio function for generating output from image input
@spaces.GPU
def run_example(image, text_input=default_question, model_id="microsoft/Phi-3.5-vision-instruct"):
model = models[model_id]
processor = processors[model_id]
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
image = Image.fromarray(image).convert("RGB")
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
generate_ids = model.generate(**inputs, max_new_tokens=1000, eos_token_id=processor.tokenizer.eos_token_id)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return response
# Custom CSS for styling
css = """
#output_text {
height: 500px;
overflow: auto;
border: 1px solid #333;
}
#model_selector, #text_input {
display: none !important;
}
#main_container {
border: 2px solid black;
padding: 20px;
border-radius: 10px;
}
"""
# Gradio interface with styling and layout improvements
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Row(id="main_container"):
with gr.Column():
input_img = gr.Image(label="Input Image", interactive=True)
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct", visible=False)
text_input = gr.Textbox(label="Question", value=default_question, visible=False)
submit_btn = gr.Button(value="Generate Prompt")
output_text = gr.Textbox(label="Output", id="output_text", interactive=False)
# Link button action to function
submit_btn.click(run_example, [input_img, text_input, model_selector], output_text)
# Launch Gradio interface
demo.queue(api_open=False)
demo.launch(debug=True, show_api=False)