Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,80 +4,72 @@ from transformers import AutoModelForCausalLM, AutoProcessor
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import subprocess
|
|
|
|
|
7 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
8 |
|
|
|
9 |
models = {
|
10 |
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
11 |
}
|
12 |
-
|
13 |
processors = {
|
14 |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
15 |
}
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
kwargs['torch_dtype'] = torch.bfloat16
|
21 |
-
|
22 |
-
user_prompt = '<|user|>\n'
|
23 |
-
assistant_prompt = '<|assistant|>\n'
|
24 |
-
prompt_suffix = "<|end|>\n"
|
25 |
-
|
26 |
-
default_question = "You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 100 words in this format: [image content/subject, description of action, state, and mood], [art form, style], [artist/photographer reference if needed], [additional settings such as camera and lens settings, lighting, colors, effects, texture, background, rendering]."
|
27 |
|
|
|
28 |
@spaces.GPU
|
29 |
def run_example(image, text_input=default_question, model_id="microsoft/Phi-3.5-vision-instruct"):
|
30 |
model = models[model_id]
|
31 |
processor = processors[model_id]
|
32 |
-
|
|
|
|
|
|
|
33 |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
34 |
image = Image.fromarray(image).convert("RGB")
|
35 |
|
36 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
37 |
-
generate_ids = model.generate(**inputs,
|
38 |
-
max_new_tokens=1000,
|
39 |
-
eos_token_id=processor.tokenizer.eos_token_id,
|
40 |
-
)
|
41 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
42 |
-
response = processor.batch_decode(generate_ids,
|
43 |
-
skip_special_tokens=True,
|
44 |
-
clean_up_tokenization_spaces=False)[0]
|
45 |
return response
|
46 |
|
|
|
47 |
css = """
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
border
|
52 |
-
height: 180px; /* Fixed height */
|
53 |
-
object-fit: contain; /* Ensure image fits within the fixed height */
|
54 |
}
|
55 |
-
|
56 |
-
|
57 |
-
margin-top: 15px;
|
58 |
-
border: 2px solid #333; /* Darker outline */
|
59 |
-
border-radius: 8px;
|
60 |
-
height: 180px; /* Fixed height */
|
61 |
-
object-fit: contain; /* Ensure image fits within the fixed height */
|
62 |
}
|
63 |
-
#
|
64 |
-
|
|
|
|
|
65 |
}
|
66 |
"""
|
67 |
|
|
|
68 |
with gr.Blocks(css=css) as demo:
|
69 |
gr.Markdown(DESCRIPTION)
|
70 |
-
with gr.
|
71 |
-
with gr.
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
output_text = gr.Textbox(label="Output Text")
|
79 |
|
80 |
-
|
|
|
81 |
|
|
|
82 |
demo.queue(api_open=False)
|
83 |
demo.launch(debug=True, show_api=False)
|
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import subprocess
|
7 |
+
|
8 |
+
# Install flash-attn with no CUDA build isolation
|
9 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
|
11 |
+
# Load model and processor
|
12 |
models = {
|
13 |
"microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
14 |
}
|
|
|
15 |
processors = {
|
16 |
"microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
|
17 |
}
|
18 |
|
19 |
+
# Default description and prompt
|
20 |
+
DESCRIPTION = ""
|
21 |
+
default_question = "You are an image to prompt converter. Your work is to observe each and every detail of the image and craft a detailed prompt under 100 words."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Gradio function for generating output from image input
|
24 |
@spaces.GPU
|
25 |
def run_example(image, text_input=default_question, model_id="microsoft/Phi-3.5-vision-instruct"):
|
26 |
model = models[model_id]
|
27 |
processor = processors[model_id]
|
28 |
+
user_prompt = '<|user|>\n'
|
29 |
+
assistant_prompt = '<|assistant|>\n'
|
30 |
+
prompt_suffix = "<|end|>\n"
|
31 |
+
|
32 |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
|
33 |
image = Image.fromarray(image).convert("RGB")
|
34 |
|
35 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
36 |
+
generate_ids = model.generate(**inputs, max_new_tokens=1000, eos_token_id=processor.tokenizer.eos_token_id)
|
|
|
|
|
|
|
37 |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
38 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
|
|
39 |
return response
|
40 |
|
41 |
+
# Custom CSS for styling
|
42 |
css = """
|
43 |
+
#output_text {
|
44 |
+
height: 500px;
|
45 |
+
overflow: auto;
|
46 |
+
border: 1px solid #333;
|
|
|
|
|
47 |
}
|
48 |
+
#model_selector, #text_input {
|
49 |
+
display: none !important;
|
|
|
|
|
|
|
|
|
|
|
50 |
}
|
51 |
+
#main_container {
|
52 |
+
border: 2px solid black;
|
53 |
+
padding: 20px;
|
54 |
+
border-radius: 10px;
|
55 |
}
|
56 |
"""
|
57 |
|
58 |
+
# Gradio interface with styling and layout improvements
|
59 |
with gr.Blocks(css=css) as demo:
|
60 |
gr.Markdown(DESCRIPTION)
|
61 |
+
with gr.Row(id="main_container"):
|
62 |
+
with gr.Column():
|
63 |
+
input_img = gr.Image(label="Input Image", interactive=True)
|
64 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct", visible=False)
|
65 |
+
text_input = gr.Textbox(label="Question", value=default_question, visible=False)
|
66 |
+
submit_btn = gr.Button(value="Generate Prompt")
|
67 |
+
|
68 |
+
output_text = gr.Textbox(label="Output", id="output_text", interactive=False)
|
|
|
69 |
|
70 |
+
# Link button action to function
|
71 |
+
submit_btn.click(run_example, [input_img, text_input, model_selector], output_text)
|
72 |
|
73 |
+
# Launch Gradio interface
|
74 |
demo.queue(api_open=False)
|
75 |
demo.launch(debug=True, show_api=False)
|