Spaces:
Running
Running
File size: 17,254 Bytes
284b9fd 1104333 284b9fd 5f9464e 284b9fd 1104333 284b9fd 1104333 284b9fd 40fefc5 284b9fd 40fefc5 284b9fd 40fefc5 1104333 284b9fd bf44bd7 284b9fd db34083 284b9fd db34083 284b9fd f111044 284b9fd db34083 284b9fd f111044 284b9fd db34083 284b9fd db34083 284b9fd db34083 284b9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import re
import os
import json
import time
import torch
import random
import shutil
import argparse
import warnings
import gradio as gr
import soundfile as sf
from transformers import GPT2Config
from model import Patchilizer, TunesFormer
from convert import abc2xml, xml2img, xml2, transpose_octaves_abc
from utils import (
PATCH_NUM_LAYERS,
PATCH_LENGTH,
CHAR_NUM_LAYERS,
PATCH_SIZE,
SHARE_WEIGHTS,
TEMP_DIR,
WEIGHTS_DIR,
DEVICE,
)
def get_args(parser: argparse.ArgumentParser):
parser.add_argument(
"-num_tunes",
type=int,
default=1,
help="the number of independently computed returned tunes",
)
parser.add_argument(
"-max_patch",
type=int,
default=128,
help="integer to define the maximum length in tokens of each tune",
)
parser.add_argument(
"-top_p",
type=float,
default=0.8,
help="float to define the tokens that are within the sample operation of text generation",
)
parser.add_argument(
"-top_k",
type=int,
default=8,
help="integer to define the tokens that are within the sample operation of text generation",
)
parser.add_argument(
"-temperature",
type=float,
default=1.2,
help="the temperature of the sampling operation",
)
parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
parser.add_argument(
"-show_control_code",
type=bool,
default=False,
help="whether to show control code",
)
return parser.parse_args()
def get_abc_key_val(text: str, key="K"):
pattern = re.escape(key) + r":(.*?)\n"
match = re.search(pattern, text)
if match:
return match.group(1).strip()
else:
return None
def adjust_volume(in_audio: str, dB_change: int):
y, sr = sf.read(in_audio)
sf.write(in_audio, y * 10 ** (dB_change / 20), sr)
def generate_music(
args,
emo: str,
weights: str,
outdir=TEMP_DIR,
fix_tempo=None,
fix_pitch=None,
fix_volume=None,
):
patchilizer = Patchilizer()
patch_config = GPT2Config(
num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
vocab_size=1,
)
char_config = GPT2Config(
num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE,
max_position_embeddings=PATCH_SIZE,
vocab_size=128,
)
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
checkpoint = torch.load(weights, map_location=DEVICE)
model.load_state_dict(checkpoint["model"])
model = model.to(DEVICE)
model.eval()
prompt = f"A:{emo}\n"
tunes = ""
num_tunes = args.num_tunes
max_patch = args.max_patch
top_p = args.top_p
top_k = args.top_k
temperature = args.temperature
seed = args.seed
show_control_code = args.show_control_code
print(" Hyper parms ".center(60, "#"), "\n")
args_dict: dict = vars(args)
for arg in args_dict.keys():
print(f"{arg}: {str(args_dict[arg])}")
print("\n", " Output tunes ".center(60, "#"))
start_time = time.time()
for i in range(num_tunes):
title = f"T:{emo} Fragment\n"
artist = f"C:Generated by AI\n"
tune = f"X:{str(i + 1)}\n{title}{artist}{prompt}"
lines = re.split(r"(\n)", tune)
tune = ""
skip = False
for line in lines:
if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
if not skip:
print(line, end="")
tune += line
skip = False
else:
skip = True
input_patches = torch.tensor(
[patchilizer.encode(prompt, add_special_patches=True)[:-1]],
device=DEVICE,
)
if tune == "":
tokens = None
else:
prefix = patchilizer.decode(input_patches[0])
remaining_tokens = prompt[len(prefix) :]
tokens = torch.tensor(
[patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
device=DEVICE,
)
while input_patches.shape[1] < max_patch:
predicted_patch, seed = model.generate(
input_patches,
tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
seed=seed,
)
tokens = None
if predicted_patch[0] != patchilizer.eos_token_id:
next_bar = patchilizer.decode([predicted_patch])
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
print(next_bar, end="")
tune += next_bar
if next_bar == "":
break
next_bar = remaining_tokens + next_bar
remaining_tokens = ""
predicted_patch = torch.tensor(
patchilizer.bar2patch(next_bar),
device=DEVICE,
).unsqueeze(0)
input_patches = torch.cat(
[input_patches, predicted_patch.unsqueeze(0)],
dim=1,
)
else:
break
tunes += f"{tune}\n\n"
print("\n")
# fix tempo
if fix_tempo != None:
tempo = f"Q:{fix_tempo}\n"
else:
tempo = f"Q:{random.randint(88, 132)}\n"
if emo == "Q1":
tempo = f"Q:{random.randint(160, 184)}\n"
elif emo == "Q2":
tempo = f"Q:{random.randint(184, 228)}\n"
elif emo == "Q3":
tempo = f"Q:{random.randint(40, 69)}\n"
elif emo == "Q4":
tempo = f"Q:{random.randint(40, 69)}\n"
Q_val = get_abc_key_val(tunes, "Q")
if Q_val:
tunes = tunes.replace(f"Q:{Q_val}\n", "")
K_val = get_abc_key_val(tunes)
if K_val == "none":
K_val = "C"
tunes = tunes.replace("K:none\n", f"K:{K_val}\n")
tunes = tunes.replace(f"A:{emo}\n", tempo)
# fix mode:major/minor
mode = "major" if emo == "Q1" or emo == "Q4" else "minor"
if (mode == "major") and ("m" in K_val):
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.split('m')[0]}\n")
elif (mode == "minor") and (not "m" in K_val):
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.replace('dor', '')}min\n")
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
try:
# fix avg_pitch (octave)
if fix_pitch != None:
if fix_pitch:
tunes, xml = transpose_octaves_abc(
tunes,
f"{outdir}/{timestamp}.musicxml",
fix_pitch,
)
tunes = tunes.replace(title + title, title)
os.rename(xml, f"{outdir}/[{emo}]{timestamp}.musicxml")
xml = f"{outdir}/[{emo}]{timestamp}.musicxml"
else:
if mode == "minor":
offset = -12
if emo == "Q2":
offset -= 12
tunes, xml = transpose_octaves_abc(
tunes,
f"{outdir}/{timestamp}.musicxml",
offset,
)
tunes = tunes.replace(title + title, title)
os.rename(xml, f"{outdir}/[{emo}]{timestamp}.musicxml")
xml = f"{outdir}/[{emo}]{timestamp}.musicxml"
else:
xml = abc2xml(tunes, f"{outdir}/[{emo}]{timestamp}.musicxml")
audio = xml2(xml, "wav")
if fix_volume != None:
if fix_volume:
adjust_volume(audio, fix_volume)
elif os.path.exists(audio):
if emo == "Q1":
adjust_volume(audio, 5)
elif emo == "Q2":
adjust_volume(audio, 10)
mxl = xml2(xml, "mxl")
midi = xml2(xml, "mid")
pdf, jpg = xml2img(xml)
return audio, midi, pdf, xml, mxl, tunes, jpg
except Exception as e:
print(f"{e}")
return generate_music(args, emo, weights)
def inference(dataset: str, v: str, a: str, add_chord: bool):
if os.path.exists(TEMP_DIR):
shutil.rmtree(TEMP_DIR)
os.makedirs(TEMP_DIR, exist_ok=True)
emotion = "Q1"
if v == "Low" and a == "High":
emotion = "Q2"
elif v == "Low" and a == "Low":
emotion = "Q3"
elif v == "High" and a == "Low":
emotion = "Q4"
parser = argparse.ArgumentParser()
args = get_args(parser)
return generate_music(
args,
emo=emotion,
weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
)
def infer(
dataset: str,
pitch_std: str,
mode: str,
tempo: int,
octave: int,
rms: int,
add_chord: bool,
):
if os.path.exists(TEMP_DIR):
shutil.rmtree(TEMP_DIR)
os.makedirs(TEMP_DIR, exist_ok=True)
emotion = "Q1"
if mode == "Minor" and pitch_std == "High":
emotion = "Q2"
elif mode == "Minor" and pitch_std == "Low":
emotion = "Q3"
elif mode == "Major" and pitch_std == "Low":
emotion = "Q4"
parser = argparse.ArgumentParser()
args = get_args(parser)
return generate_music(
args,
emo=emotion,
weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
fix_tempo=tempo,
fix_pitch=octave,
fix_volume=rms,
)
def feedback(fixed_emo: str, source_dir="./flagged", target_dir="./feedbacks"):
if not fixed_emo:
return "Please select feedback before submitting! "
os.makedirs(target_dir, exist_ok=True)
for root, _, files in os.walk(source_dir):
for file in files:
if file.endswith(".mxl"):
prompt_emo = file.split("]")[0][1:]
if prompt_emo != fixed_emo:
file_path = os.path.join(root, file)
target_path = os.path.join(
target_dir, file.replace(".mxl", f"_{fixed_emo}.mxl")
)
shutil.copy(file_path, target_path)
return f"Copied {file_path} to {target_path}"
else:
return "Thanks for your feedback!"
return "No .mxl files found in the source directory."
def save_template(
label: str,
pitch_std: str,
mode: str,
tempo: int,
octave: int,
rms: int,
):
if (
label
and pitch_std
and mode
and tempo != None
and octave != None
and rms != None
):
json_str = json.dumps(
{
"label": label,
"pitch_std": pitch_std == "High",
"mode": mode == "Major",
"tempo": tempo,
"octave": octave,
"volume": rms,
}
)
with open("./feedbacks/templates.jsonl", "a", encoding="utf-8") as file:
file.write(json_str + "\n")
if __name__ == "__main__":
warnings.filterwarnings("ignore")
if os.path.exists("./flagged"):
shutil.rmtree("./flagged")
with gr.Blocks() as demo:
gr.Markdown(
"## The current CPU-based version on HuggingFace has slow inference, you can access the GPU-based mirror on [ModelScope](https://www.modelscope.cn/studios/monetjoe/EMelodyGen)"
)
with gr.Row():
with gr.Column():
gr.Video(
"./tutorial.mp4",
label="Tutorial",
show_download_button=False,
show_share_button=False,
)
dataset_option = gr.Dropdown(
["VGMIDI", "EMOPIA", "Rough4Q"],
label="Dataset",
value="Rough4Q",
)
gr.Markdown("# Generate by emotion condition")
gr.Image(
"https://www.modelscope.cn/studio/monetjoe/EMelodyGen/resolve/master/src/4q.jpg",
show_label=False,
show_download_button=False,
show_fullscreen_button=False,
show_share_button=False,
)
valence_radio = gr.Radio(
["Low", "High"],
label="Valence (reflects negative-positive levels of emotion)",
value="High",
)
arousal_radio = gr.Radio(
["Low", "High"],
label="Arousal (reflects the calmness-intensity of the emotion)",
value="High",
)
chord_check = gr.Checkbox(
label="Generate chords (Coming soon)",
value=False,
)
gen_btn = gr.Button("Generate")
gr.Markdown("# Generate by feature control")
std_option = gr.Radio(["Low", "High"], label="Pitch SD", value="High")
mode_option = gr.Radio(["Minor", "Major"], label="Mode", value="Major")
tempo_option = gr.Slider(
minimum=40,
maximum=228,
step=1,
value=120,
label="Tempo (BPM)",
)
octave_option = gr.Slider(
minimum=-24,
maximum=24,
step=12,
value=0,
label="Octave (Β±12)",
)
volume_option = gr.Slider(
minimum=-5,
maximum=10,
step=5,
value=0,
label="Volume (dB)",
)
chord_check_2 = gr.Checkbox(
label="Generate chords (Coming soon)",
value=False,
)
gen_btn_2 = gr.Button("Generate")
template_radio = gr.Radio(
["Q1", "Q2", "Q3", "Q4"],
label="The emotion to which the current template belongs",
)
save_btn = gr.Button("Save template")
# gr.Markdown(
# """
# ## Cite
# ```bibtex
# @article{Zhou2024EMelodyGen,
# title = {EMelodyGen: Emotion-Conditioned Melody Generation in ABC Notation},
# author = {Monan Zhou, Xiaobing Li, Feng Yu and Wei Li},
# month = {Sep},
# year = {2024},
# publisher = {GitHub},
# version = {0.1},
# url = {https://github.com/monetjoe/EMelodyGen}
# }
# ```
# """
# )
with gr.Column():
wav_audio = gr.Audio(label="Audio", type="filepath")
midi_file = gr.File(label="Download MIDI")
pdf_file = gr.File(label="Download PDF score")
xml_file = gr.File(label="Download MusicXML")
mxl_file = gr.File(label="Download MXL")
abc_textbox = gr.Textbox(label="ABC notation", show_copy_button=True)
staff_img = gr.Image(label="Staff", type="filepath")
gr.Interface(
fn=feedback,
inputs=gr.Radio(
["Q1", "Q2", "Q3", "Q4"],
label="Feedback: the emotion you believe the generated result should belong to",
),
outputs=gr.Textbox(show_copy_button=False, show_label=False),
allow_flagging="never",
)
gen_btn.click(
fn=inference,
inputs=[dataset_option, valence_radio, arousal_radio, chord_check],
outputs=[
wav_audio,
midi_file,
pdf_file,
xml_file,
mxl_file,
abc_textbox,
staff_img,
],
)
gen_btn_2.click(
fn=infer,
inputs=[
dataset_option,
std_option,
mode_option,
tempo_option,
octave_option,
volume_option,
chord_check,
],
outputs=[
wav_audio,
midi_file,
pdf_file,
xml_file,
mxl_file,
abc_textbox,
staff_img,
],
)
save_btn.click(
fn=save_template,
inputs=[
template_radio,
std_option,
mode_option,
tempo_option,
octave_option,
volume_option,
],
)
demo.launch()
|