File size: 1,854 Bytes
36b8f27 da94893 36b8f27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import torch
import torchaudio
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import streamlit as st
text_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
def transcribe(audio_path):
waveform, sample_rate = torchaudio.load(audio_path)
input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features
predicted_ids = whisper_model.generate(input_features)
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
def extract_text_features(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = text_model(**inputs)
return outputs.logits.argmax(dim=1).item()
def predict_hate_speech(audio_path, text):
transcription = transcribe(audio_path)
text_input = text if text else transcription
prediction = extract_text_features(text_input)
return "Hate Speech" if prediction == 1 else "Not Hate Speech"
st.title("Hate Speech Detector with Audio and Text")
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"])
text_input = st.text_input("Optional text input")
if st.button("Predict"):
if audio_file is not None:
with open("temp_audio.wav", "wb") as f:
f.write(audio_file.read())
prediction = predict_hate_speech("temp_audio.wav", text_input)
st.success(prediction)
else:
st.warning("Please upload an audio file.")
|