mojad121 commited on
Commit
36b8f27
·
verified ·
1 Parent(s): ab66a02

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +38 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,40 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
 
4
  import streamlit as st
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
1
+ import torch
2
+ import torchaudio
3
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
4
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
  import streamlit as st
6
 
7
+ text_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
8
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
9
+ whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
10
+ whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
11
+
12
+ def transcribe(audio_path):
13
+ waveform, sample_rate = torchaudio.load(audio_path)
14
+ input_features = whisper_processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_features
15
+ predicted_ids = whisper_model.generate(input_features)
16
+ transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
17
+ return transcription
18
+
19
+ def extract_text_features(text):
20
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
21
+ outputs = text_model(**inputs)
22
+ return outputs.logits.argmax(dim=1).item()
23
+
24
+ def predict_hate_speech(audio_path, text):
25
+ transcription = transcribe(audio_path)
26
+ text_input = text if text else transcription
27
+ prediction = extract_text_features(text_input)
28
+ return "Hate Speech" if prediction == 1 else "Not Hate Speech"
29
+
30
+ st.title("Hate Speech Detector with Audio and Text")
31
+ audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"])
32
+ text_input = st.text_input("Optional text input")
33
+ if st.button("Predict"):
34
+ if audio_file is not None:
35
+ with open("temp_audio.wav", "wb") as f:
36
+ f.write(audio_file.read())
37
+ prediction = predict_hate_speech("temp_audio.wav", text_input)
38
+ st.success(prediction)
39
+ else:
40
+ st.warning("Please upload an audio file.")