mohcineelharras's picture
more graphs
a45d429
raw
history blame
13.5 kB
# ------------------------ Libraries --------------------------
import os
import pandas as pd
import streamlit as st
import plotly.graph_objs as go
import logging
import subprocess
import threading
from dotenv import load_dotenv
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects
import plotly.express as px
import json
# ------------------------ Environment Variables --------------------------
load_dotenv()
log_folder = os.getenv("LOG_FOLDER")
# Logging
log_folder = os.getenv("LOG_STREAMLIT")
os.makedirs(log_folder, exist_ok=True)
log_file = os.path.join(log_folder, "front.log")
log_format = "%(asctime)s [%(levelname)s] - %(message)s"
logging.basicConfig(filename=log_file, level=logging.INFO, format=log_format)
logging.info("Streamlit app has started")
# Create output folder if it doesn't exist
if not os.path.exists("output"):
os.makedirs("output")
#-------------------------------------back----------------------------------
def safe_read_csv(file_path, sep=','):
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
return pd.read_csv(file_path, sep=sep)
else:
logging.warning(f"File {file_path} is empty or does not exist.")
return pd.DataFrame() # return an empty DataFrame
# etherscan
## Load the data from the CSV files
df_etherscan = pd.DataFrame()
for filename in os.listdir('output'):
if filename.endswith('.csv') and 'transactions_' in filename:
df_temp = safe_read_csv(os.path.join('output', filename), sep=',')
df_etherscan = pd.concat([df_etherscan, df_temp], ignore_index=True)
# CMC
## Load cmc data
df_cmc = safe_read_csv("output/top_100_update.csv", sep=',')
df_cmc = df_cmc[df_cmc["last_updated"] == df_cmc["last_updated"].max()]
# Global metrics about the market
def load_global_metrics():
try:
return pd.read_csv("output/global_metrics.csv")
except FileNotFoundError:
logging.warning("Global metrics file not found.")
return pd.DataFrame() # Return an empty DataFrame if file is not found
# Load influencers
def load_influencers():
try:
with open("ressources/dict_influencers_addr.json", "r") as file:
return json.load(file)
except Exception as e:
st.error(f"Error loading influencers: {e}")
return {}
def create_dominance_pie_chart(df_global_metrics):
# Extract BTC and ETH dominance
btc_dominance = df_global_metrics['btc_dominance'].iloc[0]
eth_dominance = df_global_metrics['eth_dominance'].iloc[0]
# Calculate the dominance of other cryptocurrencies
others_dominance = 100 - btc_dominance - eth_dominance
#print(btc_dominance,eth_dominance,others_dominance)
# Prepare data for pie chart
dominance_data = {
'Cryptocurrency': ['BTC', 'ETH', 'Others'],
'Dominance': [btc_dominance, eth_dominance, others_dominance]
}
df_dominance = pd.DataFrame(dominance_data)
# Create a pie chart
fig = px.pie(df_dominance, values='Dominance', names='Cryptocurrency', title='Market Cap Dominance')
return fig
def display_greed_fear_index():
try:
df = pd.read_csv('output/greed_fear_index.csv')
# Prepare data for plotting
time_periods = ['One Year Ago', 'One Month Ago', 'One Week Ago', 'Previous Close', 'Now']
values = [
df['fgi_oneYearAgo_value'].iloc[0],
df['fgi_oneMonthAgo_value'].iloc[0],
df['fgi_oneWeekAgo_value'].iloc[0],
df['fgi_previousClose_value'].iloc[0],
df['fgi_now_value'].iloc[0]
]
labels = [
df['fgi_oneYearAgo_valueText'].iloc[0],
df['fgi_oneMonthAgo_valueText'].iloc[0],
df['fgi_oneWeekAgo_valueText'].iloc[0],
df['fgi_previousClose_valueText'].iloc[0],
df['fgi_now_valueText'].iloc[0]
]
# Create a Plotly figure
fig = go.Figure(data=[
go.Scatter(x=time_periods, y=values, mode='lines+markers+text', text=labels, textposition='top center')
])
# Update layout
fig.update_layout(
title='Fear and Greed Index Over Time',
xaxis_title='Time Period',
yaxis_title='Index Value',
yaxis=dict(range=[0, 100]) # Fear and Greed index ranges from 0 to 100
)
# Display the figure
st.plotly_chart(fig)
except FileNotFoundError:
st.error("Greed and Fear index data not available. Please wait for the next update cycle.")
#-------------------------------------scheduler ----------------------------------
# Function to execute the scraping functions
def execute_etherscan_scraping():
subprocess.call(["python", "utils/scrap_etherscan.py"])
logging.info("Etherscan scraping completed")
threading.Timer(3600, execute_etherscan_scraping).start()
# Balancer scrapping
def execute_influencers_scraping():
subprocess.call(["python", "utils/scrap_influencers_balance.py"])
logging.info("Influencers balance scraping completed")
threading.Timer(3600, execute_influencers_scraping).start() # Run every hour, for example
# Function to execute the scraping functions
def execute_cmc_scraping():
subprocess.call(["python", "utils/scrap_cmc.py"])
logging.info("CMC scraping completed")
threading.Timer(2592000 / 9000, execute_cmc_scraping).start()
# Function to execute the global metrics scraping
def execute_global_metrics_scraping():
subprocess.call(["python", "utils/scrap_cmc_global_metrics.py"])
logging.info("Global metrics scraping completed")
threading.Timer(2592000 / 9000, execute_influencers_scraping).start() # Run every hour, for example
def execute_greed_fear_index_scraping():
subprocess.call(["python", "utils/scrap_greed_fear_index.py"])
logging.info("Greed and Fear index scraping completed")
threading.Timer(3600, execute_greed_fear_index_scraping).start() # Adjust the interval as needed
if "initialized" not in st.session_state:
# Start the scraping threads
threading.Thread(target=execute_etherscan_scraping).start()
threading.Thread(target=execute_cmc_scraping).start()
threading.Thread(target=execute_influencers_scraping).start()
threading.Thread(target=execute_global_metrics_scraping).start()
threading.Thread(target=execute_greed_fear_index_scraping).start()
st.session_state["initialized"] = True
#-------------------------------------streamlit ----------------------------------
# Set the title and other page configurations
st.title('Crypto Analysis')
st.header("Global Cryptocurrency Market Metrics")
# Create two columns for the two plots
col1, col2 = st.columns(2)
global_metrics_df = load_global_metrics()
display_greed_fear_index()
st.write(global_metrics_df)
with col1:
# Create and display the pie chart
dominance_fig = create_dominance_pie_chart(global_metrics_df)
dominance_fig.update_layout(
autosize=False,
width=300,
height=300,)
st.plotly_chart(dominance_fig)
with col2:
# cmc
selected_var = st.selectbox('Select Var', ["percent_change_24h","percent_change_7d","percent_change_90d"], index=0)
# Sort the DataFrame by the 'percent_change_24h' column in ascending order
df_sorted = df_cmc.sort_values(by=selected_var, ascending=False)
# Select the top 10 and worst 10 rows
top_10 = df_sorted.head(10)
worst_10 = df_sorted.tail(10)
# Combine the top and worst dataframes for plotting
combined_df = pd.concat([top_10, worst_10], axis=0)
max_abs_val = max(abs(combined_df[selected_var].min()), abs(combined_df[selected_var].max()))
# Create a bar plot for the top 10 with a green color scale
fig = go.Figure(data=[
go.Bar(
x=top_10["symbol"],
y=top_10[selected_var],
marker_color='rgb(0,100,0)', # Green color for top 10
hovertext= "Name : "+top_10["name"].astype(str)+ '<br>' +
selected_var + " : " + top_10["percent_tokens_circulation"].astype(str) + '<br>' +
'Market Cap: ' + top_10["market_cap"].astype(str) + '<br>' +
'Fully Diluted Market Cap: ' + top_10["fully_diluted_market_cap"].astype(str) + '<br>' +
'Last Updated: ' + top_10["last_updated"].astype(str),
name="top_10"
)
])
# Add the worst 10 to the same plot with a red color scale
fig.add_traces(go.Bar(
x=worst_10["symbol"],
y=worst_10[selected_var],
marker_color='rgb(255,0,0)', # Red color for worst 10
hovertext="Name:"+worst_10["name"].astype(str)+ '<br>' +
selected_var + " : " + worst_10["percent_tokens_circulation"].astype(str) + '<br>' +
'Market Cap: ' + worst_10["market_cap"].astype(str) + '<br>' +
'Fully Diluted Market Cap: ' + worst_10["fully_diluted_market_cap"].astype(str) + '<br>' +
'Last Updated: ' + worst_10["last_updated"].astype(str),
name="worst_10"
)
)
# Customize aspect
fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.8)
fig.update_layout(title_text=f'Top 10 and Worst 10 by {selected_var.split("_")[-1]} Percentage Change')
fig.update_xaxes(categoryorder='total ascending')
fig.update_layout(
autosize=False,
width=300,
height=300,
margin=dict(
l=50,
r=50,
b=100,
t=100,
pad=4
),
#paper_bgcolor="LightSteelBlue",
)
st.plotly_chart(fig)
st.header("Deep Dive into Specific Coins")
col1, col2 = st.columns(2)
with col1:
# etherscan
selected_token = st.selectbox('Select Token', df_etherscan['tokenSymbol'].unique(), index=0)
# Filter the data based on the selected token
filtered_df = df_etherscan[df_etherscan['tokenSymbol'] == selected_token]
# Plot the token value over time
st.plotly_chart(
go.Figure(
data=[
go.Scatter(
x=filtered_df['timeStamp'],
y=filtered_df['value'],
mode='lines',
name='Value over time'
)
],
layout=go.Layout(
title='Token Value Over Time',
yaxis=dict(
title=f'Value ({selected_token})',
),
showlegend=True,
legend=go.layout.Legend(x=0, y=1.0),
margin=go.layout.Margin(l=40, r=0, t=40, b=30),
width=300,
height=300,
)
)
)
with col2:
influencers = load_influencers()
with st.container():
influencer_input = st.text_input("Follow this name:address", placeholder="e.g., alice:0x123...ABC")
if st.button("Add Influencer"):
if ":" in influencer_input:
try:
new_influencer_name, new_influencer_addr = influencer_input.split(":")
influencers[new_influencer_name.strip()] = new_influencer_addr.strip()
with open("ressources/dict_influencers_addr.json", "w") as file:
json.dump(influencers, file, indent=4)
st.success(f"Influencer {new_influencer_name} added")
subprocess.call(["python", "utils/scrap_influencers_balance.py"])
st.success("Balance updated")
except ValueError:
st.error("Invalid format. Please enter as 'name:address'")
else:
st.error("Please enter the influencer details as 'name:address'")
# Load Ether balances
try:
df_balances = pd.read_csv("output/influencers_balances.csv")
logging.info(f"Balances uploaded, shape of dataframe is {df_balances.shape}")
#st.write("DataFrame Loaded:", df_balances) # Debugging line
except FileNotFoundError:
st.error("Balance data not found. Please wait for the next update cycle.")
df_balances = pd.DataFrame()
# Inverting the influencers dictionary
inverted_influencers = {v.lower(): k for k, v in influencers.items()}
if not df_balances.empty:
df_balances["balance"] = df_balances["balance"].astype(float) / 1e18 # Convert Wei to Ether
df_balances = df_balances.rename(columns={"account": "address"})
# Ensure addresses are in the same format as in the inverted dictionary (e.g., lowercase)
df_balances["address"] = df_balances["address"].str.lower()
# Perform the mapping
df_balances["influencer"] = df_balances["address"].map(inverted_influencers)
#st.write("Mapped DataFrame:", df_balances) # Debugging line
fig = px.bar(df_balances, y="influencer", x="balance",orientation="h")
fig.update_layout(
title='Ether Balances of Influencers',
xaxis=dict(
title='Balance in eth',
titlefont_size=16,
tickfont_size=14,
))
fig.update_layout(
autosize=False,
width=300,
height=400,)
st.plotly_chart(fig)
else:
logging.info("DataFrame is empty")
st.header("Deep Dive into Specific Coins")
#-------------------------------------end ----------------------------------