Spaces:
Sleeping
Sleeping
File size: 13,482 Bytes
349c960 1a57d8f 349c960 6116805 349c960 1a57d8f 349c960 1a57d8f 349c960 1a57d8f 349c960 1a57d8f 349c960 1a57d8f 349c960 a45d429 349c960 a45d429 349c960 a45d429 6116805 349c960 6116805 a45d429 349c960 1a57d8f 349c960 a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f a45d429 1a57d8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# ------------------------ Libraries --------------------------
import os
import pandas as pd
import streamlit as st
import plotly.graph_objs as go
import logging
import subprocess
import threading
from dotenv import load_dotenv
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects
import plotly.express as px
import json
# ------------------------ Environment Variables --------------------------
load_dotenv()
log_folder = os.getenv("LOG_FOLDER")
# Logging
log_folder = os.getenv("LOG_STREAMLIT")
os.makedirs(log_folder, exist_ok=True)
log_file = os.path.join(log_folder, "front.log")
log_format = "%(asctime)s [%(levelname)s] - %(message)s"
logging.basicConfig(filename=log_file, level=logging.INFO, format=log_format)
logging.info("Streamlit app has started")
# Create output folder if it doesn't exist
if not os.path.exists("output"):
os.makedirs("output")
#-------------------------------------back----------------------------------
def safe_read_csv(file_path, sep=','):
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
return pd.read_csv(file_path, sep=sep)
else:
logging.warning(f"File {file_path} is empty or does not exist.")
return pd.DataFrame() # return an empty DataFrame
# etherscan
## Load the data from the CSV files
df_etherscan = pd.DataFrame()
for filename in os.listdir('output'):
if filename.endswith('.csv') and 'transactions_' in filename:
df_temp = safe_read_csv(os.path.join('output', filename), sep=',')
df_etherscan = pd.concat([df_etherscan, df_temp], ignore_index=True)
# CMC
## Load cmc data
df_cmc = safe_read_csv("output/top_100_update.csv", sep=',')
df_cmc = df_cmc[df_cmc["last_updated"] == df_cmc["last_updated"].max()]
# Global metrics about the market
def load_global_metrics():
try:
return pd.read_csv("output/global_metrics.csv")
except FileNotFoundError:
logging.warning("Global metrics file not found.")
return pd.DataFrame() # Return an empty DataFrame if file is not found
# Load influencers
def load_influencers():
try:
with open("ressources/dict_influencers_addr.json", "r") as file:
return json.load(file)
except Exception as e:
st.error(f"Error loading influencers: {e}")
return {}
def create_dominance_pie_chart(df_global_metrics):
# Extract BTC and ETH dominance
btc_dominance = df_global_metrics['btc_dominance'].iloc[0]
eth_dominance = df_global_metrics['eth_dominance'].iloc[0]
# Calculate the dominance of other cryptocurrencies
others_dominance = 100 - btc_dominance - eth_dominance
#print(btc_dominance,eth_dominance,others_dominance)
# Prepare data for pie chart
dominance_data = {
'Cryptocurrency': ['BTC', 'ETH', 'Others'],
'Dominance': [btc_dominance, eth_dominance, others_dominance]
}
df_dominance = pd.DataFrame(dominance_data)
# Create a pie chart
fig = px.pie(df_dominance, values='Dominance', names='Cryptocurrency', title='Market Cap Dominance')
return fig
def display_greed_fear_index():
try:
df = pd.read_csv('output/greed_fear_index.csv')
# Prepare data for plotting
time_periods = ['One Year Ago', 'One Month Ago', 'One Week Ago', 'Previous Close', 'Now']
values = [
df['fgi_oneYearAgo_value'].iloc[0],
df['fgi_oneMonthAgo_value'].iloc[0],
df['fgi_oneWeekAgo_value'].iloc[0],
df['fgi_previousClose_value'].iloc[0],
df['fgi_now_value'].iloc[0]
]
labels = [
df['fgi_oneYearAgo_valueText'].iloc[0],
df['fgi_oneMonthAgo_valueText'].iloc[0],
df['fgi_oneWeekAgo_valueText'].iloc[0],
df['fgi_previousClose_valueText'].iloc[0],
df['fgi_now_valueText'].iloc[0]
]
# Create a Plotly figure
fig = go.Figure(data=[
go.Scatter(x=time_periods, y=values, mode='lines+markers+text', text=labels, textposition='top center')
])
# Update layout
fig.update_layout(
title='Fear and Greed Index Over Time',
xaxis_title='Time Period',
yaxis_title='Index Value',
yaxis=dict(range=[0, 100]) # Fear and Greed index ranges from 0 to 100
)
# Display the figure
st.plotly_chart(fig)
except FileNotFoundError:
st.error("Greed and Fear index data not available. Please wait for the next update cycle.")
#-------------------------------------scheduler ----------------------------------
# Function to execute the scraping functions
def execute_etherscan_scraping():
subprocess.call(["python", "utils/scrap_etherscan.py"])
logging.info("Etherscan scraping completed")
threading.Timer(3600, execute_etherscan_scraping).start()
# Balancer scrapping
def execute_influencers_scraping():
subprocess.call(["python", "utils/scrap_influencers_balance.py"])
logging.info("Influencers balance scraping completed")
threading.Timer(3600, execute_influencers_scraping).start() # Run every hour, for example
# Function to execute the scraping functions
def execute_cmc_scraping():
subprocess.call(["python", "utils/scrap_cmc.py"])
logging.info("CMC scraping completed")
threading.Timer(2592000 / 9000, execute_cmc_scraping).start()
# Function to execute the global metrics scraping
def execute_global_metrics_scraping():
subprocess.call(["python", "utils/scrap_cmc_global_metrics.py"])
logging.info("Global metrics scraping completed")
threading.Timer(2592000 / 9000, execute_influencers_scraping).start() # Run every hour, for example
def execute_greed_fear_index_scraping():
subprocess.call(["python", "utils/scrap_greed_fear_index.py"])
logging.info("Greed and Fear index scraping completed")
threading.Timer(3600, execute_greed_fear_index_scraping).start() # Adjust the interval as needed
if "initialized" not in st.session_state:
# Start the scraping threads
threading.Thread(target=execute_etherscan_scraping).start()
threading.Thread(target=execute_cmc_scraping).start()
threading.Thread(target=execute_influencers_scraping).start()
threading.Thread(target=execute_global_metrics_scraping).start()
threading.Thread(target=execute_greed_fear_index_scraping).start()
st.session_state["initialized"] = True
#-------------------------------------streamlit ----------------------------------
# Set the title and other page configurations
st.title('Crypto Analysis')
st.header("Global Cryptocurrency Market Metrics")
# Create two columns for the two plots
col1, col2 = st.columns(2)
global_metrics_df = load_global_metrics()
display_greed_fear_index()
st.write(global_metrics_df)
with col1:
# Create and display the pie chart
dominance_fig = create_dominance_pie_chart(global_metrics_df)
dominance_fig.update_layout(
autosize=False,
width=300,
height=300,)
st.plotly_chart(dominance_fig)
with col2:
# cmc
selected_var = st.selectbox('Select Var', ["percent_change_24h","percent_change_7d","percent_change_90d"], index=0)
# Sort the DataFrame by the 'percent_change_24h' column in ascending order
df_sorted = df_cmc.sort_values(by=selected_var, ascending=False)
# Select the top 10 and worst 10 rows
top_10 = df_sorted.head(10)
worst_10 = df_sorted.tail(10)
# Combine the top and worst dataframes for plotting
combined_df = pd.concat([top_10, worst_10], axis=0)
max_abs_val = max(abs(combined_df[selected_var].min()), abs(combined_df[selected_var].max()))
# Create a bar plot for the top 10 with a green color scale
fig = go.Figure(data=[
go.Bar(
x=top_10["symbol"],
y=top_10[selected_var],
marker_color='rgb(0,100,0)', # Green color for top 10
hovertext= "Name : "+top_10["name"].astype(str)+ '<br>' +
selected_var + " : " + top_10["percent_tokens_circulation"].astype(str) + '<br>' +
'Market Cap: ' + top_10["market_cap"].astype(str) + '<br>' +
'Fully Diluted Market Cap: ' + top_10["fully_diluted_market_cap"].astype(str) + '<br>' +
'Last Updated: ' + top_10["last_updated"].astype(str),
name="top_10"
)
])
# Add the worst 10 to the same plot with a red color scale
fig.add_traces(go.Bar(
x=worst_10["symbol"],
y=worst_10[selected_var],
marker_color='rgb(255,0,0)', # Red color for worst 10
hovertext="Name:"+worst_10["name"].astype(str)+ '<br>' +
selected_var + " : " + worst_10["percent_tokens_circulation"].astype(str) + '<br>' +
'Market Cap: ' + worst_10["market_cap"].astype(str) + '<br>' +
'Fully Diluted Market Cap: ' + worst_10["fully_diluted_market_cap"].astype(str) + '<br>' +
'Last Updated: ' + worst_10["last_updated"].astype(str),
name="worst_10"
)
)
# Customize aspect
fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.8)
fig.update_layout(title_text=f'Top 10 and Worst 10 by {selected_var.split("_")[-1]} Percentage Change')
fig.update_xaxes(categoryorder='total ascending')
fig.update_layout(
autosize=False,
width=300,
height=300,
margin=dict(
l=50,
r=50,
b=100,
t=100,
pad=4
),
#paper_bgcolor="LightSteelBlue",
)
st.plotly_chart(fig)
st.header("Deep Dive into Specific Coins")
col1, col2 = st.columns(2)
with col1:
# etherscan
selected_token = st.selectbox('Select Token', df_etherscan['tokenSymbol'].unique(), index=0)
# Filter the data based on the selected token
filtered_df = df_etherscan[df_etherscan['tokenSymbol'] == selected_token]
# Plot the token value over time
st.plotly_chart(
go.Figure(
data=[
go.Scatter(
x=filtered_df['timeStamp'],
y=filtered_df['value'],
mode='lines',
name='Value over time'
)
],
layout=go.Layout(
title='Token Value Over Time',
yaxis=dict(
title=f'Value ({selected_token})',
),
showlegend=True,
legend=go.layout.Legend(x=0, y=1.0),
margin=go.layout.Margin(l=40, r=0, t=40, b=30),
width=300,
height=300,
)
)
)
with col2:
influencers = load_influencers()
with st.container():
influencer_input = st.text_input("Follow this name:address", placeholder="e.g., alice:0x123...ABC")
if st.button("Add Influencer"):
if ":" in influencer_input:
try:
new_influencer_name, new_influencer_addr = influencer_input.split(":")
influencers[new_influencer_name.strip()] = new_influencer_addr.strip()
with open("ressources/dict_influencers_addr.json", "w") as file:
json.dump(influencers, file, indent=4)
st.success(f"Influencer {new_influencer_name} added")
subprocess.call(["python", "utils/scrap_influencers_balance.py"])
st.success("Balance updated")
except ValueError:
st.error("Invalid format. Please enter as 'name:address'")
else:
st.error("Please enter the influencer details as 'name:address'")
# Load Ether balances
try:
df_balances = pd.read_csv("output/influencers_balances.csv")
logging.info(f"Balances uploaded, shape of dataframe is {df_balances.shape}")
#st.write("DataFrame Loaded:", df_balances) # Debugging line
except FileNotFoundError:
st.error("Balance data not found. Please wait for the next update cycle.")
df_balances = pd.DataFrame()
# Inverting the influencers dictionary
inverted_influencers = {v.lower(): k for k, v in influencers.items()}
if not df_balances.empty:
df_balances["balance"] = df_balances["balance"].astype(float) / 1e18 # Convert Wei to Ether
df_balances = df_balances.rename(columns={"account": "address"})
# Ensure addresses are in the same format as in the inverted dictionary (e.g., lowercase)
df_balances["address"] = df_balances["address"].str.lower()
# Perform the mapping
df_balances["influencer"] = df_balances["address"].map(inverted_influencers)
#st.write("Mapped DataFrame:", df_balances) # Debugging line
fig = px.bar(df_balances, y="influencer", x="balance",orientation="h")
fig.update_layout(
title='Ether Balances of Influencers',
xaxis=dict(
title='Balance in eth',
titlefont_size=16,
tickfont_size=14,
))
fig.update_layout(
autosize=False,
width=300,
height=400,)
st.plotly_chart(fig)
else:
logging.info("DataFrame is empty")
st.header("Deep Dive into Specific Coins")
#-------------------------------------end ----------------------------------
|