File size: 13,482 Bytes
349c960
1a57d8f
 
 
 
 
349c960
 
 
 
6116805
 
349c960
 
 
 
 
 
 
 
 
 
 
1a57d8f
349c960
 
 
 
 
 
1a57d8f
349c960
 
 
 
 
 
1a57d8f
 
 
 
349c960
1a57d8f
349c960
 
 
1a57d8f
 
 
349c960
 
 
a45d429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349c960
 
 
 
 
 
a45d429
 
 
 
 
 
 
349c960
 
 
 
 
 
a45d429
 
 
 
 
 
 
 
 
 
 
 
6116805
349c960
 
 
 
6116805
a45d429
 
349c960
 
1a57d8f
 
 
 
349c960
a45d429
1a57d8f
 
a45d429
 
1a57d8f
a45d429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a57d8f
a45d429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a57d8f
 
a45d429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a57d8f
 
a45d429
1a57d8f
a45d429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a57d8f
 
a45d429
 
1a57d8f
a45d429
 
1a57d8f
 
a45d429
1a57d8f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# ------------------------ Libraries --------------------------
import os
import pandas as pd
import streamlit as st
import plotly.graph_objs as go
import logging
import subprocess
import threading
from dotenv import load_dotenv
from requests.exceptions import ConnectionError, Timeout, TooManyRedirects
import plotly.express as px 
import json

# ------------------------ Environment Variables --------------------------

load_dotenv()
log_folder = os.getenv("LOG_FOLDER")
# Logging
log_folder = os.getenv("LOG_STREAMLIT")
os.makedirs(log_folder, exist_ok=True)
log_file = os.path.join(log_folder, "front.log")
log_format = "%(asctime)s [%(levelname)s] - %(message)s"
logging.basicConfig(filename=log_file, level=logging.INFO, format=log_format)
logging.info("Streamlit app has started")
# Create output folder if it doesn't exist
if not os.path.exists("output"):
    os.makedirs("output")


#-------------------------------------back----------------------------------

def safe_read_csv(file_path, sep=','):
    if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
        return pd.read_csv(file_path, sep=sep)
    else:
        logging.warning(f"File {file_path} is empty or does not exist.")
        return pd.DataFrame()  # return an empty DataFrame


# etherscan
## Load the data from the CSV files
df_etherscan = pd.DataFrame()
for filename in os.listdir('output'):
    if filename.endswith('.csv') and 'transactions_' in filename:
        df_temp = safe_read_csv(os.path.join('output', filename), sep=',')
        df_etherscan = pd.concat([df_etherscan, df_temp], ignore_index=True)

# CMC
## Load cmc data
df_cmc = safe_read_csv("output/top_100_update.csv", sep=',')
df_cmc = df_cmc[df_cmc["last_updated"] == df_cmc["last_updated"].max()]

# Global metrics about the market
def load_global_metrics():
    try:
        return pd.read_csv("output/global_metrics.csv")
    except FileNotFoundError:
        logging.warning("Global metrics file not found.")
        return pd.DataFrame()  # Return an empty DataFrame if file is not found

# Load influencers
def load_influencers():
    try:
        with open("ressources/dict_influencers_addr.json", "r") as file:
            return json.load(file)
    except Exception as e:
        st.error(f"Error loading influencers: {e}")
        return {}


def create_dominance_pie_chart(df_global_metrics):
    # Extract BTC and ETH dominance
    btc_dominance = df_global_metrics['btc_dominance'].iloc[0]
    eth_dominance = df_global_metrics['eth_dominance'].iloc[0]
    # Calculate the dominance of other cryptocurrencies
    others_dominance = 100 - btc_dominance - eth_dominance
    #print(btc_dominance,eth_dominance,others_dominance)
    # Prepare data for pie chart
    dominance_data = {
        'Cryptocurrency': ['BTC', 'ETH', 'Others'],
        'Dominance': [btc_dominance, eth_dominance, others_dominance]
    }
    df_dominance = pd.DataFrame(dominance_data)
    # Create a pie chart
    fig = px.pie(df_dominance, values='Dominance', names='Cryptocurrency', title='Market Cap Dominance')
    return fig

def display_greed_fear_index():
    try:
        df = pd.read_csv('output/greed_fear_index.csv')

        # Prepare data for plotting
        time_periods = ['One Year Ago', 'One Month Ago', 'One Week Ago', 'Previous Close', 'Now']
        values = [
            df['fgi_oneYearAgo_value'].iloc[0],
            df['fgi_oneMonthAgo_value'].iloc[0],
            df['fgi_oneWeekAgo_value'].iloc[0],
            df['fgi_previousClose_value'].iloc[0],
            df['fgi_now_value'].iloc[0]
        ]
        labels = [
            df['fgi_oneYearAgo_valueText'].iloc[0],
            df['fgi_oneMonthAgo_valueText'].iloc[0],
            df['fgi_oneWeekAgo_valueText'].iloc[0],
            df['fgi_previousClose_valueText'].iloc[0],
            df['fgi_now_valueText'].iloc[0]
        ]

        # Create a Plotly figure
        fig = go.Figure(data=[
            go.Scatter(x=time_periods, y=values, mode='lines+markers+text', text=labels, textposition='top center')
        ])

        # Update layout
        fig.update_layout(
            title='Fear and Greed Index Over Time',
            xaxis_title='Time Period',
            yaxis_title='Index Value',
            yaxis=dict(range=[0, 100])  # Fear and Greed index ranges from 0 to 100
        )

        # Display the figure
        st.plotly_chart(fig)

    except FileNotFoundError:
        st.error("Greed and Fear index data not available. Please wait for the next update cycle.")

#-------------------------------------scheduler ----------------------------------

# Function to execute the scraping functions
def execute_etherscan_scraping():
    subprocess.call(["python", "utils/scrap_etherscan.py"])
    logging.info("Etherscan scraping completed")
    threading.Timer(3600, execute_etherscan_scraping).start()
    
# Balancer scrapping
def execute_influencers_scraping():
    subprocess.call(["python", "utils/scrap_influencers_balance.py"])
    logging.info("Influencers balance scraping completed")
    threading.Timer(3600, execute_influencers_scraping).start()  # Run every hour, for example

    
# Function to execute the scraping functions
def execute_cmc_scraping():
    subprocess.call(["python", "utils/scrap_cmc.py"])
    logging.info("CMC scraping completed")
    threading.Timer(2592000 / 9000, execute_cmc_scraping).start()


# Function to execute the global metrics scraping
def execute_global_metrics_scraping():
    subprocess.call(["python", "utils/scrap_cmc_global_metrics.py"])
    logging.info("Global metrics scraping completed")
    threading.Timer(2592000 / 9000, execute_influencers_scraping).start()  # Run every hour, for example

def execute_greed_fear_index_scraping():
    subprocess.call(["python", "utils/scrap_greed_fear_index.py"])
    logging.info("Greed and Fear index scraping completed")
    threading.Timer(3600, execute_greed_fear_index_scraping).start()  # Adjust the interval as needed


if "initialized" not in st.session_state:
    # Start the scraping threads
    threading.Thread(target=execute_etherscan_scraping).start()
    threading.Thread(target=execute_cmc_scraping).start()
    threading.Thread(target=execute_influencers_scraping).start()
    threading.Thread(target=execute_global_metrics_scraping).start()
    threading.Thread(target=execute_greed_fear_index_scraping).start()
    st.session_state["initialized"] = True

#-------------------------------------streamlit ----------------------------------

# Set the title and other page configurations
st.title('Crypto Analysis')

st.header("Global Cryptocurrency Market Metrics")
# Create two columns for the two plots
col1, col2 = st.columns(2)
global_metrics_df = load_global_metrics()
display_greed_fear_index()

    
st.write(global_metrics_df)
with col1:
    # Create and display the pie chart
    dominance_fig = create_dominance_pie_chart(global_metrics_df)
    dominance_fig.update_layout(
        autosize=False,
        width=300,
        height=300,)
    st.plotly_chart(dominance_fig)
with col2:
    # cmc
    selected_var = st.selectbox('Select Var', ["percent_change_24h","percent_change_7d","percent_change_90d"], index=0)
    # Sort the DataFrame by the 'percent_change_24h' column in ascending order
    df_sorted = df_cmc.sort_values(by=selected_var, ascending=False)
    # Select the top 10 and worst 10 rows
    top_10 = df_sorted.head(10)
    worst_10 = df_sorted.tail(10)
    # Combine the top and worst dataframes for plotting
    combined_df = pd.concat([top_10, worst_10], axis=0)
    max_abs_val = max(abs(combined_df[selected_var].min()), abs(combined_df[selected_var].max()))

    # Create a bar plot for the top 10 with a green color scale
    fig = go.Figure(data=[
        go.Bar(
            x=top_10["symbol"],
            y=top_10[selected_var],
            marker_color='rgb(0,100,0)',  # Green color for top 10
            hovertext= "Name : "+top_10["name"].astype(str)+ '<br>' +
                    selected_var + " : " + top_10["percent_tokens_circulation"].astype(str) + '<br>' +
                    'Market Cap: ' + top_10["market_cap"].astype(str) + '<br>' +
                    'Fully Diluted Market Cap: ' + top_10["fully_diluted_market_cap"].astype(str) + '<br>' +
                    'Last Updated: ' + top_10["last_updated"].astype(str),
            name="top_10"
        )
    ])

    # Add the worst 10 to the same plot with a red color scale
    fig.add_traces(go.Bar(
            x=worst_10["symbol"],
            y=worst_10[selected_var],
            marker_color='rgb(255,0,0)',  # Red color for worst 10
            hovertext="Name:"+worst_10["name"].astype(str)+ '<br>' +
                    selected_var + " : " + worst_10["percent_tokens_circulation"].astype(str) + '<br>' +
                    'Market Cap: ' + worst_10["market_cap"].astype(str) + '<br>' +
                    'Fully Diluted Market Cap: ' + worst_10["fully_diluted_market_cap"].astype(str) + '<br>' +
                    'Last Updated: ' + worst_10["last_updated"].astype(str),
            name="worst_10"
        )
    )

    # Customize aspect
    fig.update_traces(marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=0.8)
    fig.update_layout(title_text=f'Top 10 and Worst 10 by {selected_var.split("_")[-1]} Percentage Change')
    fig.update_xaxes(categoryorder='total ascending')
    fig.update_layout(
        autosize=False,
        width=300,
        height=300,
        margin=dict(
            l=50,
            r=50,
            b=100,
            t=100,
            pad=4
        ),
        #paper_bgcolor="LightSteelBlue",
    )
    st.plotly_chart(fig)
        
    


st.header("Deep Dive into Specific Coins")
col1, col2 = st.columns(2)
with col1:
    # etherscan
    selected_token = st.selectbox('Select Token', df_etherscan['tokenSymbol'].unique(), index=0)
    # Filter the data based on the selected token
    filtered_df = df_etherscan[df_etherscan['tokenSymbol'] == selected_token]
    # Plot the token value over time
    st.plotly_chart(
        go.Figure(
            data=[
                go.Scatter(
                    x=filtered_df['timeStamp'],
                    y=filtered_df['value'],
                    mode='lines',
                    name='Value over time'
                )
            ],
            layout=go.Layout(
                title='Token Value Over Time',
                yaxis=dict(
                    title=f'Value ({selected_token})',
                ),
                showlegend=True,
                legend=go.layout.Legend(x=0, y=1.0),
                margin=go.layout.Margin(l=40, r=0, t=40, b=30),
                width=300,
                height=300,

            )
        )
    )

with col2:
    influencers = load_influencers()
    with st.container():
        influencer_input = st.text_input("Follow this name:address", placeholder="e.g., alice:0x123...ABC")
        if st.button("Add Influencer"):
            if ":" in influencer_input:
                try:
                    new_influencer_name, new_influencer_addr = influencer_input.split(":")
                    influencers[new_influencer_name.strip()] = new_influencer_addr.strip()
                    with open("ressources/dict_influencers_addr.json", "w") as file:
                        json.dump(influencers, file, indent=4)
                    st.success(f"Influencer {new_influencer_name} added")
                    subprocess.call(["python", "utils/scrap_influencers_balance.py"])
                    st.success("Balance updated")
                except ValueError:
                    st.error("Invalid format. Please enter as 'name:address'")
            else:
                st.error("Please enter the influencer details as 'name:address'")
    # Load Ether balances
    try:
        df_balances = pd.read_csv("output/influencers_balances.csv")
        logging.info(f"Balances uploaded, shape of dataframe is {df_balances.shape}")
        #st.write("DataFrame Loaded:", df_balances)  # Debugging line
    except FileNotFoundError:
        st.error("Balance data not found. Please wait for the next update cycle.")
        df_balances = pd.DataFrame()
        
    # Inverting the influencers dictionary
    inverted_influencers = {v.lower(): k for k, v in influencers.items()}

    if not df_balances.empty:
        df_balances["balance"] = df_balances["balance"].astype(float) / 1e18  # Convert Wei to Ether
        df_balances = df_balances.rename(columns={"account": "address"})

        # Ensure addresses are in the same format as in the inverted dictionary (e.g., lowercase)
        df_balances["address"] = df_balances["address"].str.lower()

        # Perform the mapping
        df_balances["influencer"] = df_balances["address"].map(inverted_influencers)
        #st.write("Mapped DataFrame:", df_balances)  # Debugging line

        fig = px.bar(df_balances, y="influencer", x="balance",orientation="h")
        fig.update_layout(
            title='Ether Balances of Influencers',
            xaxis=dict(
                title='Balance in eth',
                titlefont_size=16,
                tickfont_size=14,
            ))
        fig.update_layout(
            autosize=False,
            width=300,
            height=400,)
        st.plotly_chart(fig)
    else:
        logging.info("DataFrame is empty")


st.header("Deep Dive into Specific Coins")

#-------------------------------------end ----------------------------------