mohamedrady's picture
Update app.py
49fcff6 verified
raw
history blame
8.48 kB
import os
import re
from camel_tools.tokenizers.word import simple_word_tokenize
from camel_tools.ner import NERecognizer
import nltk
import torch
from collections import Counter
from transformers import pipeline, AutoModel, AutoTokenizer
import PyPDF2
import gradio as gr
import openai
from haystack.nodes import FARMReader
from paddlenlp import Taskflow
# تحميل وتفعيل الأدوات المطلوبة
nltk.download('punkt')
# التحقق من توفر GPU واستخدامه
device = 0 if torch.cuda.is_available() else -1
# تحميل نماذج التحليل اللغوي
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
# تحميل نموذج التعرف على الكيانات في camel_tools
ner = NERecognizer.pretrained()
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base")
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base")
arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator")
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator")
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
# إعداد OpenAI API
openai.api_key = os.getenv("sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU")
# إعداد farm-haystack
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
# إعداد paddlenlp
ner_task = Taskflow("ner")
# دالة لتحليل النص باستخدام camel_tools
def camel_ner_analysis(text):
tokens = simple_word_tokenize(text)
entities = ner.predict(tokens)
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
for token, tag in zip(tokens, entities):
if tag in entity_dict:
entity_dict[tag].append((token, tag))
return entity_dict
# دالة لتحليل المشاعر
def analyze_sentiments(text):
sentiments = analyzer(text)
return sentiments
# دالة لتجزئة النص إلى جمل
def nltk_extract_sentences(text):
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
return sentences
# دالة لاستخراج الاقتباسات من النص
def nltk_extract_quotes(text):
quotes = []
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
for sentence in sentences:
if '"' in sentence or '«' in sentence or '»' in sentence:
quotes.append(sentence)
return quotes
# دالة لعد الرموز في النص
def count_tokens(text):
tokens = simple_word_tokenize(text)
return len(tokens)
# دالة لاستخراج النص من ملفات PDF
def extract_pdf_text(file_path):
with open(file_path, "rb") as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text()
return text
# دالة لاستخراج المشاهد من النص
def extract_scenes(text):
scenes = re.split(r'داخلي|خارجي', text)
scenes = [scene.strip() for scene in scenes if scene.strip()]
return scenes
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
def extract_scene_details(scene):
details = {}
location_match = re.search(r'(داخلي|خارجي)', scene)
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
if location_match:
details['location'] = location_match.group()
if time_match:
details['time'] = time_match.group()
return details
# دالة لاستخراج أعمار الشخصيات
def extract_ages(text):
ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
return ages
# دالة لاستخراج وصف الشخصيات
def extract_character_descriptions(text):
descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
return descriptions
# دالة لاستخراج تكرار الشخصيات
def extract_character_frequency(entities):
persons = [ent[0] for ent in entities['PERSON']]
frequency = Counter(persons)
return frequency
# دالة لاستخراج الحوارات وتحديد المتحدثين
def extract_dialogues(text):
dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
return dialogues
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
def analyze_and_complete(file_paths):
results = []
output_directory = os.getenv("SPACE_DIR", "/app/output")
for file_path in file_paths:
if file_path.endswith(".pdf"):
text = extract_pdf_text(file_path)
else:
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
camel_entities = camel_ner_analysis(text)
sentiments = analyze_sentiments(text)
sentences = nltk_extract_sentences(text)
quotes = nltk_extract_quotes(text)
token_count = count_tokens(text)
scenes = extract_scenes(text)
ages = extract_ages(text)
character_descriptions = extract_character_descriptions(text)
character_frequency = extract_character_frequency(camel_entities)
dialogues = extract_dialogues(text)
scene_details = [extract_scene_details(scene) for scene in scenes]
# حفظ النتائج إلى ملفات
with open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") as file:
file.write(str(camel_entities))
with open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") as file:
file.write(str(sentiments))
with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(sentences))
with open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(quotes))
with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
file.write(str(token_count))
with open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(scenes))
with open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") as file:
file.write(str(scene_details))
with open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") as file:
file.write(str(ages))
with open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") as file:
file.write(str(character_descriptions))
with open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") as file:
file.write(str(character_frequency))
with open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") as file:
file.write(str(dialogues))
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
return results
# تعريف واجهة Gradio
interface = gr.Interface(
fn=analyze_and_complete,
inputs=gr.File(file_count="multiple", type="filepath"),
outputs=gr.outputs.JSON(),
title="Movie Script Analyzer and Completer",
description="Upload text, PDF, or DOCX files to analyze and complete the movie script."
)
if __name__ == "__main__":
interface.launch()