Spaces:
Running
on
Zero
Running
on
Zero
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py | |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import math | |
import torch | |
import torch.nn as nn | |
from einops import repeat | |
from comfy.ldm.modules.attention import optimized_attention | |
from comfy.ldm.flux.layers import EmbedND | |
from comfy.ldm.flux.math import apply_rope | |
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm | |
import comfy.ldm.common_dit | |
import comfy.model_management | |
def sinusoidal_embedding_1d(dim, position): | |
# preprocess | |
assert dim % 2 == 0 | |
half = dim // 2 | |
position = position.type(torch.float32) | |
# calculation | |
sinusoid = torch.outer( | |
position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
return x | |
class WanSelfAttention(nn.Module): | |
def __init__(self, | |
dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
eps=1e-6, operation_settings={}): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.eps = eps | |
# layers | |
self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() | |
self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() | |
def forward(self, x, freqs): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
# query, key, value function | |
def qkv_fn(x): | |
q = self.norm_q(self.q(x)).view(b, s, n, d) | |
k = self.norm_k(self.k(x)).view(b, s, n, d) | |
v = self.v(x).view(b, s, n * d) | |
return q, k, v | |
q, k, v = qkv_fn(x) | |
q, k = apply_rope(q, k, freqs) | |
x = optimized_attention( | |
q.view(b, s, n * d), | |
k.view(b, s, n * d), | |
v, | |
heads=self.num_heads, | |
) | |
x = self.o(x) | |
return x | |
class WanT2VCrossAttention(WanSelfAttention): | |
def forward(self, x, context): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
context(Tensor): Shape [B, L2, C] | |
""" | |
# compute query, key, value | |
q = self.norm_q(self.q(x)) | |
k = self.norm_k(self.k(context)) | |
v = self.v(context) | |
# compute attention | |
x = optimized_attention(q, k, v, heads=self.num_heads) | |
x = self.o(x) | |
return x | |
class WanI2VCrossAttention(WanSelfAttention): | |
def __init__(self, | |
dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
eps=1e-6, operation_settings={}): | |
super().__init__(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings) | |
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
# self.alpha = nn.Parameter(torch.zeros((1, ))) | |
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() | |
def forward(self, x, context): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
context(Tensor): Shape [B, L2, C] | |
""" | |
context_img = context[:, :257] | |
context = context[:, 257:] | |
# compute query, key, value | |
q = self.norm_q(self.q(x)) | |
k = self.norm_k(self.k(context)) | |
v = self.v(context) | |
k_img = self.norm_k_img(self.k_img(context_img)) | |
v_img = self.v_img(context_img) | |
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads) | |
# compute attention | |
x = optimized_attention(q, k, v, heads=self.num_heads) | |
# output | |
x = x + img_x | |
x = self.o(x) | |
return x | |
WAN_CROSSATTENTION_CLASSES = { | |
't2v_cross_attn': WanT2VCrossAttention, | |
'i2v_cross_attn': WanI2VCrossAttention, | |
} | |
class WanAttentionBlock(nn.Module): | |
def __init__(self, | |
cross_attn_type, | |
dim, | |
ffn_dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=False, | |
eps=1e-6, operation_settings={}): | |
super().__init__() | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
# layers | |
self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, | |
eps, operation_settings=operation_settings) | |
self.norm3 = operation_settings.get("operations").LayerNorm( | |
dim, eps, | |
elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity() | |
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, | |
num_heads, | |
(-1, -1), | |
qk_norm, | |
eps, operation_settings=operation_settings) | |
self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
self.ffn = nn.Sequential( | |
operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'), | |
operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
# modulation | |
self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
def forward( | |
self, | |
x, | |
e, | |
freqs, | |
context, | |
): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
e(Tensor): Shape [B, 6, C] | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
# assert e.dtype == torch.float32 | |
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1) | |
# assert e[0].dtype == torch.float32 | |
# self-attention | |
y = self.self_attn( | |
self.norm1(x) * (1 + e[1]) + e[0], | |
freqs) | |
x = x + y * e[2] | |
# cross-attention & ffn | |
x = x + self.cross_attn(self.norm3(x), context) | |
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3]) | |
x = x + y * e[5] | |
return x | |
class Head(nn.Module): | |
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}): | |
super().__init__() | |
self.dim = dim | |
self.out_dim = out_dim | |
self.patch_size = patch_size | |
self.eps = eps | |
# layers | |
out_dim = math.prod(patch_size) * out_dim | |
self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) | |
# modulation | |
self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
def forward(self, x, e): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
e(Tensor): Shape [B, C] | |
""" | |
# assert e.dtype == torch.float32 | |
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1) | |
x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) | |
return x | |
class MLPProj(torch.nn.Module): | |
def __init__(self, in_dim, out_dim, operation_settings={}): | |
super().__init__() | |
self.proj = torch.nn.Sequential( | |
operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), | |
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), | |
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
def forward(self, image_embeds): | |
clip_extra_context_tokens = self.proj(image_embeds) | |
return clip_extra_context_tokens | |
class WanModel(torch.nn.Module): | |
r""" | |
Wan diffusion backbone supporting both text-to-video and image-to-video. | |
""" | |
def __init__(self, | |
model_type='t2v', | |
patch_size=(1, 2, 2), | |
text_len=512, | |
in_dim=16, | |
dim=2048, | |
ffn_dim=8192, | |
freq_dim=256, | |
text_dim=4096, | |
out_dim=16, | |
num_heads=16, | |
num_layers=32, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=True, | |
eps=1e-6, | |
image_model=None, | |
device=None, | |
dtype=None, | |
operations=None, | |
): | |
r""" | |
Initialize the diffusion model backbone. | |
Args: | |
model_type (`str`, *optional*, defaults to 't2v'): | |
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
text_len (`int`, *optional*, defaults to 512): | |
Fixed length for text embeddings | |
in_dim (`int`, *optional*, defaults to 16): | |
Input video channels (C_in) | |
dim (`int`, *optional*, defaults to 2048): | |
Hidden dimension of the transformer | |
ffn_dim (`int`, *optional*, defaults to 8192): | |
Intermediate dimension in feed-forward network | |
freq_dim (`int`, *optional*, defaults to 256): | |
Dimension for sinusoidal time embeddings | |
text_dim (`int`, *optional*, defaults to 4096): | |
Input dimension for text embeddings | |
out_dim (`int`, *optional*, defaults to 16): | |
Output video channels (C_out) | |
num_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads | |
num_layers (`int`, *optional*, defaults to 32): | |
Number of transformer blocks | |
window_size (`tuple`, *optional*, defaults to (-1, -1)): | |
Window size for local attention (-1 indicates global attention) | |
qk_norm (`bool`, *optional*, defaults to True): | |
Enable query/key normalization | |
cross_attn_norm (`bool`, *optional*, defaults to False): | |
Enable cross-attention normalization | |
eps (`float`, *optional*, defaults to 1e-6): | |
Epsilon value for normalization layers | |
""" | |
super().__init__() | |
self.dtype = dtype | |
operation_settings = {"operations": operations, "device": device, "dtype": dtype} | |
assert model_type in ['t2v', 'i2v'] | |
self.model_type = model_type | |
self.patch_size = patch_size | |
self.text_len = text_len | |
self.in_dim = in_dim | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.freq_dim = freq_dim | |
self.text_dim = text_dim | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
# embeddings | |
self.patch_embedding = operations.Conv3d( | |
in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=torch.float32) | |
self.text_embedding = nn.Sequential( | |
operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'), | |
operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
self.time_embedding = nn.Sequential( | |
operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) | |
# blocks | |
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' | |
self.blocks = nn.ModuleList([ | |
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings) | |
for _ in range(num_layers) | |
]) | |
# head | |
self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings) | |
d = dim // num_heads | |
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)]) | |
if model_type == 'i2v': | |
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings) | |
else: | |
self.img_emb = None | |
def forward_orig( | |
self, | |
x, | |
t, | |
context, | |
clip_fea=None, | |
freqs=None, | |
transformer_options={}, | |
): | |
r""" | |
Forward pass through the diffusion model | |
Args: | |
x (Tensor): | |
List of input video tensors with shape [B, C_in, F, H, W] | |
t (Tensor): | |
Diffusion timesteps tensor of shape [B] | |
context (List[Tensor]): | |
List of text embeddings each with shape [B, L, C] | |
seq_len (`int`): | |
Maximum sequence length for positional encoding | |
clip_fea (Tensor, *optional*): | |
CLIP image features for image-to-video mode | |
y (List[Tensor], *optional*): | |
Conditional video inputs for image-to-video mode, same shape as x | |
Returns: | |
List[Tensor]: | |
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
""" | |
# embeddings | |
x = self.patch_embedding(x.float()).to(x.dtype) | |
grid_sizes = x.shape[2:] | |
x = x.flatten(2).transpose(1, 2) | |
# time embeddings | |
e = self.time_embedding( | |
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) | |
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
# context | |
context = self.text_embedding(context) | |
if clip_fea is not None and self.img_emb is not None: | |
context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
context = torch.concat([context_clip, context], dim=1) | |
patches_replace = transformer_options.get("patches_replace", {}) | |
blocks_replace = patches_replace.get("dit", {}) | |
for i, block in enumerate(self.blocks): | |
if ("double_block", i) in blocks_replace: | |
def block_wrap(args): | |
out = {} | |
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"]) | |
return out | |
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap}) | |
x = out["img"] | |
else: | |
x = block(x, e=e0, freqs=freqs, context=context) | |
# head | |
x = self.head(x, e) | |
# unpatchify | |
x = self.unpatchify(x, grid_sizes) | |
return x | |
def forward(self, x, timestep, context, clip_fea=None, transformer_options={},**kwargs): | |
bs, c, t, h, w = x.shape | |
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) | |
patch_size = self.patch_size | |
t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) | |
h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) | |
w_len = ((w + (patch_size[2] // 2)) // patch_size[2]) | |
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype) | |
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1) | |
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1) | |
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1) | |
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs) | |
freqs = self.rope_embedder(img_ids).movedim(1, 2) | |
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options)[:, :, :t, :h, :w] | |
def unpatchify(self, x, grid_sizes): | |
r""" | |
Reconstruct video tensors from patch embeddings. | |
Args: | |
x (List[Tensor]): | |
List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
grid_sizes (Tensor): | |
Original spatial-temporal grid dimensions before patching, | |
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
Returns: | |
List[Tensor]: | |
Reconstructed video tensors with shape [L, C_out, F, H / 8, W / 8] | |
""" | |
c = self.out_dim | |
u = x | |
b = u.shape[0] | |
u = u[:, :math.prod(grid_sizes)].view(b, *grid_sizes, *self.patch_size, c) | |
u = torch.einsum('bfhwpqrc->bcfphqwr', u) | |
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)]) | |
return u | |