File size: 20,248 Bytes
50eec37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math

import torch
import torch.nn as nn
from einops import repeat

from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
import comfy.ldm.common_dit
import comfy.model_management


def sinusoidal_embedding_1d(dim, position):
    # preprocess
    assert dim % 2 == 0
    half = dim // 2
    position = position.type(torch.float32)

    # calculation
    sinusoid = torch.outer(
        position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
    return x


class WanSelfAttention(nn.Module):

    def __init__(self,
                 dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 eps=1e-6, operation_settings={}):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.eps = eps

        # layers
        self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
        self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()

    def forward(self, x, freqs):
        r"""
        Args:
            x(Tensor): Shape [B, L, num_heads, C / num_heads]
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim

        # query, key, value function
        def qkv_fn(x):
            q = self.norm_q(self.q(x)).view(b, s, n, d)
            k = self.norm_k(self.k(x)).view(b, s, n, d)
            v = self.v(x).view(b, s, n * d)
            return q, k, v

        q, k, v = qkv_fn(x)
        q, k = apply_rope(q, k, freqs)

        x = optimized_attention(
            q.view(b, s, n * d),
            k.view(b, s, n * d),
            v,
            heads=self.num_heads,
        )

        x = self.o(x)
        return x


class WanT2VCrossAttention(WanSelfAttention):

    def forward(self, x, context):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
        """
        # compute query, key, value
        q = self.norm_q(self.q(x))
        k = self.norm_k(self.k(context))
        v = self.v(context)

        # compute attention
        x = optimized_attention(q, k, v, heads=self.num_heads)

        x = self.o(x)
        return x


class WanI2VCrossAttention(WanSelfAttention):

    def __init__(self,
                 dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 eps=1e-6, operation_settings={}):
        super().__init__(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings)

        self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        # self.alpha = nn.Parameter(torch.zeros((1, )))
        self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()

    def forward(self, x, context):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
        """
        context_img = context[:, :257]
        context = context[:, 257:]

        # compute query, key, value
        q = self.norm_q(self.q(x))
        k = self.norm_k(self.k(context))
        v = self.v(context)
        k_img = self.norm_k_img(self.k_img(context_img))
        v_img = self.v_img(context_img)
        img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads)
        # compute attention
        x = optimized_attention(q, k, v, heads=self.num_heads)

        # output
        x = x + img_x
        x = self.o(x)
        return x


WAN_CROSSATTENTION_CLASSES = {
    't2v_cross_attn': WanT2VCrossAttention,
    'i2v_cross_attn': WanI2VCrossAttention,
}


class WanAttentionBlock(nn.Module):

    def __init__(self,
                 cross_attn_type,
                 dim,
                 ffn_dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=False,
                 eps=1e-6, operation_settings={}):
        super().__init__()
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps

        # layers
        self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
                                          eps, operation_settings=operation_settings)
        self.norm3 = operation_settings.get("operations").LayerNorm(
            dim, eps,
            elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity()
        self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
                                                                      num_heads,
                                                                      (-1, -1),
                                                                      qk_norm,
                                                                      eps, operation_settings=operation_settings)
        self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        self.ffn = nn.Sequential(
            operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
            operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))

        # modulation
        self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))

    def forward(
        self,
        x,
        e,
        freqs,
        context,
    ):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
            e(Tensor): Shape [B, 6, C]
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        # assert e.dtype == torch.float32

        e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
        # assert e[0].dtype == torch.float32

        # self-attention
        y = self.self_attn(
            self.norm1(x) * (1 + e[1]) + e[0],
            freqs)

        x = x + y * e[2]

        # cross-attention & ffn
        x = x + self.cross_attn(self.norm3(x), context)
        y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
        x = x + y * e[5]
        return x


class Head(nn.Module):

    def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
        super().__init__()
        self.dim = dim
        self.out_dim = out_dim
        self.patch_size = patch_size
        self.eps = eps

        # layers
        out_dim = math.prod(patch_size) * out_dim
        self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
        self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))

        # modulation
        self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))

    def forward(self, x, e):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            e(Tensor): Shape [B, C]
        """
        # assert e.dtype == torch.float32
        e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1)
        x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
        return x


class MLPProj(torch.nn.Module):

    def __init__(self, in_dim, out_dim, operation_settings={}):
        super().__init__()

        self.proj = torch.nn.Sequential(
            operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
            torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
            operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))

    def forward(self, image_embeds):
        clip_extra_context_tokens = self.proj(image_embeds)
        return clip_extra_context_tokens


class WanModel(torch.nn.Module):
    r"""
    Wan diffusion backbone supporting both text-to-video and image-to-video.
    """

    def __init__(self,
                 model_type='t2v',
                 patch_size=(1, 2, 2),
                 text_len=512,
                 in_dim=16,
                 dim=2048,
                 ffn_dim=8192,
                 freq_dim=256,
                 text_dim=4096,
                 out_dim=16,
                 num_heads=16,
                 num_layers=32,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=True,
                 eps=1e-6,
                 image_model=None,
                 device=None,
                 dtype=None,
                 operations=None,
                 ):
        r"""
        Initialize the diffusion model backbone.

        Args:
            model_type (`str`, *optional*, defaults to 't2v'):
                Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
            patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
                3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
            text_len (`int`, *optional*, defaults to 512):
                Fixed length for text embeddings
            in_dim (`int`, *optional*, defaults to 16):
                Input video channels (C_in)
            dim (`int`, *optional*, defaults to 2048):
                Hidden dimension of the transformer
            ffn_dim (`int`, *optional*, defaults to 8192):
                Intermediate dimension in feed-forward network
            freq_dim (`int`, *optional*, defaults to 256):
                Dimension for sinusoidal time embeddings
            text_dim (`int`, *optional*, defaults to 4096):
                Input dimension for text embeddings
            out_dim (`int`, *optional*, defaults to 16):
                Output video channels (C_out)
            num_heads (`int`, *optional*, defaults to 16):
                Number of attention heads
            num_layers (`int`, *optional*, defaults to 32):
                Number of transformer blocks
            window_size (`tuple`, *optional*, defaults to (-1, -1)):
                Window size for local attention (-1 indicates global attention)
            qk_norm (`bool`, *optional*, defaults to True):
                Enable query/key normalization
            cross_attn_norm (`bool`, *optional*, defaults to False):
                Enable cross-attention normalization
            eps (`float`, *optional*, defaults to 1e-6):
                Epsilon value for normalization layers
        """

        super().__init__()
        self.dtype = dtype
        operation_settings = {"operations": operations, "device": device, "dtype": dtype}

        assert model_type in ['t2v', 'i2v']
        self.model_type = model_type

        self.patch_size = patch_size
        self.text_len = text_len
        self.in_dim = in_dim
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.freq_dim = freq_dim
        self.text_dim = text_dim
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps

        # embeddings
        self.patch_embedding = operations.Conv3d(
            in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=torch.float32)
        self.text_embedding = nn.Sequential(
            operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
            operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))

        self.time_embedding = nn.Sequential(
            operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
        self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))

        # blocks
        cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
        self.blocks = nn.ModuleList([
            WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
                              window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
            for _ in range(num_layers)
        ])

        # head
        self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings)

        d = dim // num_heads
        self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])

        if model_type == 'i2v':
            self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
        else:
            self.img_emb = None

    def forward_orig(
        self,
        x,
        t,
        context,
        clip_fea=None,
        freqs=None,
        transformer_options={},
    ):
        r"""
        Forward pass through the diffusion model

        Args:
            x (Tensor):
                List of input video tensors with shape [B, C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [B, L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x

        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """
        # embeddings
        x = self.patch_embedding(x.float()).to(x.dtype)
        grid_sizes = x.shape[2:]
        x = x.flatten(2).transpose(1, 2)

        # time embeddings
        e = self.time_embedding(
            sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
        e0 = self.time_projection(e).unflatten(1, (6, self.dim))

        # context
        context = self.text_embedding(context)

        if clip_fea is not None and self.img_emb is not None:
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
            context = torch.concat([context_clip, context], dim=1)

        patches_replace = transformer_options.get("patches_replace", {})
        blocks_replace = patches_replace.get("dit", {})
        for i, block in enumerate(self.blocks):
            if ("double_block", i) in blocks_replace:
                def block_wrap(args):
                    out = {}
                    out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
                    return out
                out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
                x = out["img"]
            else:
                x = block(x, e=e0, freqs=freqs, context=context)

        # head
        x = self.head(x, e)

        # unpatchify
        x = self.unpatchify(x, grid_sizes)
        return x

    def forward(self, x, timestep, context, clip_fea=None, transformer_options={},**kwargs):
        bs, c, t, h, w = x.shape
        x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
        patch_size = self.patch_size
        t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
        h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
        w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
        img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
        img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
        img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
        img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
        img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)

        freqs = self.rope_embedder(img_ids).movedim(1, 2)
        return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options)[:, :, :t, :h, :w]

    def unpatchify(self, x, grid_sizes):
        r"""
        Reconstruct video tensors from patch embeddings.

        Args:
            x (List[Tensor]):
                List of patchified features, each with shape [L, C_out * prod(patch_size)]
            grid_sizes (Tensor):
                Original spatial-temporal grid dimensions before patching,
                    shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)

        Returns:
            List[Tensor]:
                Reconstructed video tensors with shape [L, C_out, F, H / 8, W / 8]
        """

        c = self.out_dim
        u = x
        b = u.shape[0]
        u = u[:, :math.prod(grid_sizes)].view(b, *grid_sizes, *self.patch_size, c)
        u = torch.einsum('bfhwpqrc->bcfphqwr', u)
        u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
        return u