Spaces:
Sleeping
Sleeping
Rename scraper.py.txt to scraper.py
Browse files- scraper.py.txt → scraper.py +457 -457
scraper.py.txt → scraper.py
RENAMED
@@ -1,458 +1,458 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os
|
4 |
-
import random
|
5 |
-
import time
|
6 |
-
import re
|
7 |
-
import json
|
8 |
-
from datetime import datetime
|
9 |
-
from typing import List, Dict, Type
|
10 |
-
|
11 |
-
import pandas as pd
|
12 |
-
from bs4 import BeautifulSoup
|
13 |
-
from pydantic import BaseModel, Field, create_model
|
14 |
-
import html2text
|
15 |
-
import tiktoken
|
16 |
-
|
17 |
-
from dotenv import load_dotenv
|
18 |
-
from selenium import webdriver
|
19 |
-
from selenium.webdriver.chrome.service import Service
|
20 |
-
from selenium.webdriver.chrome.options import Options
|
21 |
-
from selenium.webdriver.common.by import By
|
22 |
-
from selenium.webdriver.common.action_chains import ActionChains
|
23 |
-
from selenium.webdriver.support.ui import WebDriverWait
|
24 |
-
from selenium.webdriver.support import expected_conditions as EC
|
25 |
-
|
26 |
-
|
27 |
-
from openai import OpenAI
|
28 |
-
import google.generativeai as genai
|
29 |
-
from groq import Groq
|
30 |
-
|
31 |
-
|
32 |
-
from assets import USER_AGENTS,PRICING,HEADLESS_OPTIONS,SYSTEM_MESSAGE,USER_MESSAGE,LLAMA_MODEL_FULLNAME,GROQ_LLAMA_MODEL_FULLNAME
|
33 |
-
load_dotenv()
|
34 |
-
|
35 |
-
# Set up the Chrome WebDriver options
|
36 |
-
|
37 |
-
def setup_selenium():
|
38 |
-
options = Options()
|
39 |
-
|
40 |
-
# Randomly select a user agent from the imported list
|
41 |
-
user_agent = random.choice(USER_AGENTS)
|
42 |
-
options.add_argument(f"user-agent={user_agent}")
|
43 |
-
|
44 |
-
# Add other options
|
45 |
-
for option in HEADLESS_OPTIONS:
|
46 |
-
options.add_argument(option)
|
47 |
-
|
48 |
-
# Specify the path to the ChromeDriver
|
49 |
-
service = Service(r"./chromedriver-win64/chromedriver.exe")
|
50 |
-
|
51 |
-
# Initialize the WebDriver
|
52 |
-
driver = webdriver.Chrome(service=service, options=options)
|
53 |
-
return driver
|
54 |
-
|
55 |
-
def click_accept_cookies(driver):
|
56 |
-
"""
|
57 |
-
Tries to find and click on a cookie consent button. It looks for several common patterns.
|
58 |
-
"""
|
59 |
-
try:
|
60 |
-
# Wait for cookie popup to load
|
61 |
-
WebDriverWait(driver, 10).until(
|
62 |
-
EC.presence_of_element_located((By.XPATH, "//button | //a | //div"))
|
63 |
-
)
|
64 |
-
|
65 |
-
# Common text variations for cookie buttons
|
66 |
-
accept_text_variations = [
|
67 |
-
"accept", "agree", "allow", "consent", "continue", "ok", "I agree", "got it"
|
68 |
-
]
|
69 |
-
|
70 |
-
# Iterate through different element types and common text variations
|
71 |
-
for tag in ["button", "a", "div"]:
|
72 |
-
for text in accept_text_variations:
|
73 |
-
try:
|
74 |
-
# Create an XPath to find the button by text
|
75 |
-
element = driver.find_element(By.XPATH, f"//{tag}[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), '{text}')]")
|
76 |
-
if element:
|
77 |
-
element.click()
|
78 |
-
print(f"Clicked the '{text}' button.")
|
79 |
-
return
|
80 |
-
except:
|
81 |
-
continue
|
82 |
-
|
83 |
-
print("No 'Accept Cookies' button found.")
|
84 |
-
|
85 |
-
except Exception as e:
|
86 |
-
print(f"Error finding 'Accept Cookies' button: {e}")
|
87 |
-
|
88 |
-
def fetch_html_selenium(url):
|
89 |
-
driver = setup_selenium()
|
90 |
-
try:
|
91 |
-
driver.get(url)
|
92 |
-
|
93 |
-
# Add random delays to mimic human behavior
|
94 |
-
time.sleep(1) # Adjust this to simulate time for user to read or interact
|
95 |
-
driver.maximize_window()
|
96 |
-
|
97 |
-
|
98 |
-
# Try to find and click the 'Accept Cookies' button
|
99 |
-
# click_accept_cookies(driver)
|
100 |
-
|
101 |
-
# Add more realistic actions like scrolling
|
102 |
-
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/2);")
|
103 |
-
time.sleep(random.uniform(1.1, 1.8)) # Simulate time taken to scroll and read
|
104 |
-
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1.2);")
|
105 |
-
time.sleep(random.uniform(1.1, 1.8))
|
106 |
-
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1);")
|
107 |
-
time.sleep(random.uniform(1.1, 2.1))
|
108 |
-
html = driver.page_source
|
109 |
-
return html
|
110 |
-
finally:
|
111 |
-
driver.quit()
|
112 |
-
|
113 |
-
def clean_html(html_content):
|
114 |
-
soup = BeautifulSoup(html_content, 'html.parser')
|
115 |
-
|
116 |
-
# Remove headers and footers based on common HTML tags or classes
|
117 |
-
for element in soup.find_all(['header', 'footer']):
|
118 |
-
element.decompose() # Remove these tags and their content
|
119 |
-
|
120 |
-
return str(soup)
|
121 |
-
|
122 |
-
|
123 |
-
def html_to_markdown_with_readability(html_content):
|
124 |
-
|
125 |
-
|
126 |
-
cleaned_html = clean_html(html_content)
|
127 |
-
|
128 |
-
# Convert to markdown
|
129 |
-
markdown_converter = html2text.HTML2Text()
|
130 |
-
markdown_converter.ignore_links = False
|
131 |
-
markdown_content = markdown_converter.handle(cleaned_html)
|
132 |
-
|
133 |
-
return markdown_content
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
def save_raw_data(raw_data: str, output_folder: str, file_name: str):
|
138 |
-
"""Save raw markdown data to the specified output folder."""
|
139 |
-
os.makedirs(output_folder, exist_ok=True)
|
140 |
-
raw_output_path = os.path.join(output_folder, file_name)
|
141 |
-
with open(raw_output_path, 'w', encoding='utf-8') as f:
|
142 |
-
f.write(raw_data)
|
143 |
-
print(f"Raw data saved to {raw_output_path}")
|
144 |
-
return raw_output_path
|
145 |
-
|
146 |
-
|
147 |
-
def remove_urls_from_file(file_path):
|
148 |
-
# Regex pattern to find URLs
|
149 |
-
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
|
150 |
-
|
151 |
-
# Construct the new file name
|
152 |
-
base, ext = os.path.splitext(file_path)
|
153 |
-
new_file_path = f"{base}_cleaned{ext}"
|
154 |
-
|
155 |
-
# Read the original markdown content
|
156 |
-
with open(file_path, 'r', encoding='utf-8') as file:
|
157 |
-
markdown_content = file.read()
|
158 |
-
|
159 |
-
# Replace all found URLs with an empty string
|
160 |
-
cleaned_content = re.sub(url_pattern, '', markdown_content)
|
161 |
-
|
162 |
-
# Write the cleaned content to a new file
|
163 |
-
with open(new_file_path, 'w', encoding='utf-8') as file:
|
164 |
-
file.write(cleaned_content)
|
165 |
-
print(f"Cleaned file saved as: {new_file_path}")
|
166 |
-
return cleaned_content
|
167 |
-
|
168 |
-
|
169 |
-
def create_dynamic_listing_model(field_names: List[str]) -> Type[BaseModel]:
|
170 |
-
"""
|
171 |
-
Dynamically creates a Pydantic model based on provided fields.
|
172 |
-
field_name is a list of names of the fields to extract from the markdown.
|
173 |
-
"""
|
174 |
-
# Create field definitions using aliases for Field parameters
|
175 |
-
field_definitions = {field: (str, ...) for field in field_names}
|
176 |
-
# Dynamically create the model with all field
|
177 |
-
return create_model('DynamicListingModel', **field_definitions)
|
178 |
-
|
179 |
-
|
180 |
-
def create_listings_container_model(listing_model: Type[BaseModel]) -> Type[BaseModel]:
|
181 |
-
"""
|
182 |
-
Create a container model that holds a list of the given listing model.
|
183 |
-
"""
|
184 |
-
return create_model('DynamicListingsContainer', listings=(List[listing_model], ...))
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
def trim_to_token_limit(text, model, max_tokens=120000):
|
190 |
-
encoder = tiktoken.encoding_for_model(model)
|
191 |
-
tokens = encoder.encode(text)
|
192 |
-
if len(tokens) > max_tokens:
|
193 |
-
trimmed_text = encoder.decode(tokens[:max_tokens])
|
194 |
-
return trimmed_text
|
195 |
-
return text
|
196 |
-
|
197 |
-
def generate_system_message(listing_model: BaseModel) -> str:
|
198 |
-
"""
|
199 |
-
Dynamically generate a system message based on the fields in the provided listing model.
|
200 |
-
"""
|
201 |
-
# Use the model_json_schema() method to introspect the Pydantic model
|
202 |
-
schema_info = listing_model.model_json_schema()
|
203 |
-
|
204 |
-
# Extract field descriptions from the schema
|
205 |
-
field_descriptions = []
|
206 |
-
for field_name, field_info in schema_info["properties"].items():
|
207 |
-
# Get the field type from the schema info
|
208 |
-
field_type = field_info["type"]
|
209 |
-
field_descriptions.append(f'"{field_name}": "{field_type}"')
|
210 |
-
|
211 |
-
# Create the JSON schema structure for the listings
|
212 |
-
schema_structure = ",\n".join(field_descriptions)
|
213 |
-
|
214 |
-
# Generate the system message dynamically
|
215 |
-
system_message = f"""
|
216 |
-
You are an intelligent text extraction and conversion assistant. Your task is to extract structured information
|
217 |
-
from the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,
|
218 |
-
with no additional commentary, explanations, or extraneous information.
|
219 |
-
You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.
|
220 |
-
Please process the following text and provide the output in pure JSON format with no words before or after the JSON:
|
221 |
-
Please ensure the output strictly follows this schema:
|
222 |
-
|
223 |
-
{{
|
224 |
-
"listings": [
|
225 |
-
{{
|
226 |
-
{schema_structure}
|
227 |
-
}}
|
228 |
-
]
|
229 |
-
}} """
|
230 |
-
|
231 |
-
return system_message
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
def format_data(data, DynamicListingsContainer, DynamicListingModel, selected_model):
|
236 |
-
token_counts = {}
|
237 |
-
|
238 |
-
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
|
239 |
-
# Use OpenAI API
|
240 |
-
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
|
241 |
-
completion = client.beta.chat.completions.parse(
|
242 |
-
model=selected_model,
|
243 |
-
messages=[
|
244 |
-
{"role": "system", "content": SYSTEM_MESSAGE},
|
245 |
-
{"role": "user", "content": USER_MESSAGE + data},
|
246 |
-
],
|
247 |
-
response_format=DynamicListingsContainer
|
248 |
-
)
|
249 |
-
# Calculate tokens using tiktoken
|
250 |
-
encoder = tiktoken.encoding_for_model(selected_model)
|
251 |
-
input_token_count = len(encoder.encode(USER_MESSAGE + data))
|
252 |
-
output_token_count = len(encoder.encode(json.dumps(completion.choices[0].message.parsed.dict())))
|
253 |
-
token_counts = {
|
254 |
-
"input_tokens": input_token_count,
|
255 |
-
"output_tokens": output_token_count
|
256 |
-
}
|
257 |
-
return completion.choices[0].message.parsed, token_counts
|
258 |
-
|
259 |
-
elif selected_model == "gemini-1.5-flash":
|
260 |
-
# Use Google Gemini API
|
261 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
262 |
-
model = genai.GenerativeModel('gemini-1.5-flash',
|
263 |
-
generation_config={
|
264 |
-
"response_mime_type": "application/json",
|
265 |
-
"response_schema": DynamicListingsContainer
|
266 |
-
})
|
267 |
-
prompt = SYSTEM_MESSAGE + "\n" + USER_MESSAGE + data
|
268 |
-
# Count input tokens using Gemini's method
|
269 |
-
input_tokens = model.count_tokens(prompt)
|
270 |
-
completion = model.generate_content(prompt)
|
271 |
-
# Extract token counts from usage_metadata
|
272 |
-
usage_metadata = completion.usage_metadata
|
273 |
-
token_counts = {
|
274 |
-
"input_tokens": usage_metadata.prompt_token_count,
|
275 |
-
"output_tokens": usage_metadata.candidates_token_count
|
276 |
-
}
|
277 |
-
return completion.text, token_counts
|
278 |
-
|
279 |
-
elif selected_model == "Llama3.1 8B":
|
280 |
-
|
281 |
-
# Dynamically generate the system message based on the schema
|
282 |
-
sys_message = generate_system_message(DynamicListingModel)
|
283 |
-
# print(SYSTEM_MESSAGE)
|
284 |
-
# Point to the local server
|
285 |
-
client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
|
286 |
-
|
287 |
-
completion = client.chat.completions.create(
|
288 |
-
model=LLAMA_MODEL_FULLNAME, #change this if needed (use a better model)
|
289 |
-
messages=[
|
290 |
-
{"role": "system", "content": sys_message},
|
291 |
-
{"role": "user", "content": USER_MESSAGE + data}
|
292 |
-
],
|
293 |
-
temperature=0.7,
|
294 |
-
|
295 |
-
)
|
296 |
-
|
297 |
-
# Extract the content from the response
|
298 |
-
response_content = completion.choices[0].message.content
|
299 |
-
print(response_content)
|
300 |
-
# Convert the content from JSON string to a Python dictionary
|
301 |
-
parsed_response = json.loads(response_content)
|
302 |
-
|
303 |
-
# Extract token usage
|
304 |
-
token_counts = {
|
305 |
-
"input_tokens": completion.usage.prompt_tokens,
|
306 |
-
"output_tokens": completion.usage.completion_tokens
|
307 |
-
}
|
308 |
-
|
309 |
-
return parsed_response, token_counts
|
310 |
-
elif selected_model== "Groq Llama3.1 70b":
|
311 |
-
|
312 |
-
# Dynamically generate the system message based on the schema
|
313 |
-
sys_message = generate_system_message(DynamicListingModel)
|
314 |
-
# print(SYSTEM_MESSAGE)
|
315 |
-
# Point to the local server
|
316 |
-
client = Groq(api_key=os.environ.get("GROQ_API_KEY"),)
|
317 |
-
|
318 |
-
completion = client.chat.completions.create(
|
319 |
-
messages=[
|
320 |
-
{"role": "system","content": sys_message},
|
321 |
-
{"role": "user","content": USER_MESSAGE + data}
|
322 |
-
],
|
323 |
-
model=GROQ_LLAMA_MODEL_FULLNAME,
|
324 |
-
)
|
325 |
-
|
326 |
-
# Extract the content from the response
|
327 |
-
response_content = completion.choices[0].message.content
|
328 |
-
|
329 |
-
# Convert the content from JSON string to a Python dictionary
|
330 |
-
parsed_response = json.loads(response_content)
|
331 |
-
|
332 |
-
# completion.usage
|
333 |
-
token_counts = {
|
334 |
-
"input_tokens": completion.usage.prompt_tokens,
|
335 |
-
"output_tokens": completion.usage.completion_tokens
|
336 |
-
}
|
337 |
-
|
338 |
-
return parsed_response, token_counts
|
339 |
-
else:
|
340 |
-
raise ValueError(f"Unsupported model: {selected_model}")
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
def save_formatted_data(formatted_data, output_folder: str, json_file_name: str, excel_file_name: str):
|
345 |
-
"""Save formatted data as JSON and Excel in the specified output folder."""
|
346 |
-
os.makedirs(output_folder, exist_ok=True)
|
347 |
-
|
348 |
-
# Parse the formatted data if it's a JSON string (from Gemini API)
|
349 |
-
if isinstance(formatted_data, str):
|
350 |
-
try:
|
351 |
-
formatted_data_dict = json.loads(formatted_data)
|
352 |
-
except json.JSONDecodeError:
|
353 |
-
raise ValueError("The provided formatted data is a string but not valid JSON.")
|
354 |
-
else:
|
355 |
-
# Handle data from OpenAI or other sources
|
356 |
-
formatted_data_dict = formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data
|
357 |
-
|
358 |
-
# Save the formatted data as JSON
|
359 |
-
json_output_path = os.path.join(output_folder, json_file_name)
|
360 |
-
with open(json_output_path, 'w', encoding='utf-8') as f:
|
361 |
-
json.dump(formatted_data_dict, f, indent=4)
|
362 |
-
print(f"Formatted data saved to JSON at {json_output_path}")
|
363 |
-
|
364 |
-
# Prepare data for DataFrame
|
365 |
-
if isinstance(formatted_data_dict, dict):
|
366 |
-
# If the data is a dictionary containing lists, assume these lists are records
|
367 |
-
data_for_df = next(iter(formatted_data_dict.values())) if len(formatted_data_dict) == 1 else formatted_data_dict
|
368 |
-
elif isinstance(formatted_data_dict, list):
|
369 |
-
data_for_df = formatted_data_dict
|
370 |
-
else:
|
371 |
-
raise ValueError("Formatted data is neither a dictionary nor a list, cannot convert to DataFrame")
|
372 |
-
|
373 |
-
# Create DataFrame
|
374 |
-
try:
|
375 |
-
df = pd.DataFrame(data_for_df)
|
376 |
-
print("DataFrame created successfully.")
|
377 |
-
|
378 |
-
# Save the DataFrame to an Excel file
|
379 |
-
excel_output_path = os.path.join(output_folder, excel_file_name)
|
380 |
-
df.to_excel(excel_output_path, index=False)
|
381 |
-
print(f"Formatted data saved to Excel at {excel_output_path}")
|
382 |
-
|
383 |
-
return df
|
384 |
-
except Exception as e:
|
385 |
-
print(f"Error creating DataFrame or saving Excel: {str(e)}")
|
386 |
-
return None
|
387 |
-
|
388 |
-
def calculate_price(token_counts, model):
|
389 |
-
input_token_count = token_counts.get("input_tokens", 0)
|
390 |
-
output_token_count = token_counts.get("output_tokens", 0)
|
391 |
-
|
392 |
-
# Calculate the costs
|
393 |
-
input_cost = input_token_count * PRICING[model]["input"]
|
394 |
-
output_cost = output_token_count * PRICING[model]["output"]
|
395 |
-
total_cost = input_cost + output_cost
|
396 |
-
|
397 |
-
return input_token_count, output_token_count, total_cost
|
398 |
-
|
399 |
-
|
400 |
-
def generate_unique_folder_name(url):
|
401 |
-
timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')
|
402 |
-
url_name = re.sub(r'\W+', '_', url.split('//')[1].split('/')[0]) # Extract domain name and replace non-alphanumeric characters
|
403 |
-
return f"{url_name}_{timestamp}"
|
404 |
-
|
405 |
-
|
406 |
-
def scrape_multiple_urls(urls, fields, selected_model):
|
407 |
-
output_folder = os.path.join('output', generate_unique_folder_name(urls[0]))
|
408 |
-
os.makedirs(output_folder, exist_ok=True)
|
409 |
-
|
410 |
-
total_input_tokens = 0
|
411 |
-
total_output_tokens = 0
|
412 |
-
total_cost = 0
|
413 |
-
all_data = []
|
414 |
-
markdown = None # We'll store the markdown for the first (or only) URL
|
415 |
-
|
416 |
-
for i, url in enumerate(urls, start=1):
|
417 |
-
raw_html = fetch_html_selenium(url)
|
418 |
-
current_markdown = html_to_markdown_with_readability(raw_html)
|
419 |
-
if i == 1:
|
420 |
-
markdown = current_markdown # Store markdown for the first URL
|
421 |
-
|
422 |
-
input_tokens, output_tokens, cost, formatted_data = scrape_url(url, fields, selected_model, output_folder, i, current_markdown)
|
423 |
-
total_input_tokens += input_tokens
|
424 |
-
total_output_tokens += output_tokens
|
425 |
-
total_cost += cost
|
426 |
-
all_data.append(formatted_data)
|
427 |
-
|
428 |
-
return output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, markdown
|
429 |
-
|
430 |
-
def scrape_url(url: str, fields: List[str], selected_model: str, output_folder: str, file_number: int, markdown: str):
|
431 |
-
"""Scrape a single URL and save the results."""
|
432 |
-
try:
|
433 |
-
# Save raw data
|
434 |
-
save_raw_data(markdown, output_folder, f'rawData_{file_number}.md')
|
435 |
-
|
436 |
-
# Create the dynamic listing model
|
437 |
-
DynamicListingModel = create_dynamic_listing_model(fields)
|
438 |
-
|
439 |
-
# Create the container model that holds a list of the dynamic listing models
|
440 |
-
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
|
441 |
-
|
442 |
-
# Format data
|
443 |
-
formatted_data, token_counts = format_data(markdown, DynamicListingsContainer, DynamicListingModel, selected_model)
|
444 |
-
|
445 |
-
# Save formatted data
|
446 |
-
save_formatted_data(formatted_data, output_folder, f'sorted_data_{file_number}.json', f'sorted_data_{file_number}.xlsx')
|
447 |
-
|
448 |
-
# Calculate and return token usage and cost
|
449 |
-
input_tokens, output_tokens, total_cost = calculate_price(token_counts, selected_model)
|
450 |
-
return input_tokens, output_tokens, total_cost, formatted_data
|
451 |
-
|
452 |
-
except Exception as e:
|
453 |
-
print(f"An error occurred while processing {url}: {e}")
|
454 |
-
return 0, 0, 0, None
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
import re
|
7 |
+
import json
|
8 |
+
from datetime import datetime
|
9 |
+
from typing import List, Dict, Type
|
10 |
+
|
11 |
+
import pandas as pd
|
12 |
+
from bs4 import BeautifulSoup
|
13 |
+
from pydantic import BaseModel, Field, create_model
|
14 |
+
import html2text
|
15 |
+
import tiktoken
|
16 |
+
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
from selenium import webdriver
|
19 |
+
from selenium.webdriver.chrome.service import Service
|
20 |
+
from selenium.webdriver.chrome.options import Options
|
21 |
+
from selenium.webdriver.common.by import By
|
22 |
+
from selenium.webdriver.common.action_chains import ActionChains
|
23 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
24 |
+
from selenium.webdriver.support import expected_conditions as EC
|
25 |
+
|
26 |
+
|
27 |
+
from openai import OpenAI
|
28 |
+
import google.generativeai as genai
|
29 |
+
from groq import Groq
|
30 |
+
|
31 |
+
|
32 |
+
from assets import USER_AGENTS,PRICING,HEADLESS_OPTIONS,SYSTEM_MESSAGE,USER_MESSAGE,LLAMA_MODEL_FULLNAME,GROQ_LLAMA_MODEL_FULLNAME
|
33 |
+
load_dotenv()
|
34 |
+
|
35 |
+
# Set up the Chrome WebDriver options
|
36 |
+
|
37 |
+
def setup_selenium():
|
38 |
+
options = Options()
|
39 |
+
|
40 |
+
# Randomly select a user agent from the imported list
|
41 |
+
user_agent = random.choice(USER_AGENTS)
|
42 |
+
options.add_argument(f"user-agent={user_agent}")
|
43 |
+
|
44 |
+
# Add other options
|
45 |
+
for option in HEADLESS_OPTIONS:
|
46 |
+
options.add_argument(option)
|
47 |
+
|
48 |
+
# Specify the path to the ChromeDriver
|
49 |
+
service = Service(r"./chromedriver-win64/chromedriver.exe")
|
50 |
+
|
51 |
+
# Initialize the WebDriver
|
52 |
+
driver = webdriver.Chrome(service=service, options=options)
|
53 |
+
return driver
|
54 |
+
|
55 |
+
def click_accept_cookies(driver):
|
56 |
+
"""
|
57 |
+
Tries to find and click on a cookie consent button. It looks for several common patterns.
|
58 |
+
"""
|
59 |
+
try:
|
60 |
+
# Wait for cookie popup to load
|
61 |
+
WebDriverWait(driver, 10).until(
|
62 |
+
EC.presence_of_element_located((By.XPATH, "//button | //a | //div"))
|
63 |
+
)
|
64 |
+
|
65 |
+
# Common text variations for cookie buttons
|
66 |
+
accept_text_variations = [
|
67 |
+
"accept", "agree", "allow", "consent", "continue", "ok", "I agree", "got it"
|
68 |
+
]
|
69 |
+
|
70 |
+
# Iterate through different element types and common text variations
|
71 |
+
for tag in ["button", "a", "div"]:
|
72 |
+
for text in accept_text_variations:
|
73 |
+
try:
|
74 |
+
# Create an XPath to find the button by text
|
75 |
+
element = driver.find_element(By.XPATH, f"//{tag}[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), '{text}')]")
|
76 |
+
if element:
|
77 |
+
element.click()
|
78 |
+
print(f"Clicked the '{text}' button.")
|
79 |
+
return
|
80 |
+
except:
|
81 |
+
continue
|
82 |
+
|
83 |
+
print("No 'Accept Cookies' button found.")
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error finding 'Accept Cookies' button: {e}")
|
87 |
+
|
88 |
+
def fetch_html_selenium(url):
|
89 |
+
driver = setup_selenium()
|
90 |
+
try:
|
91 |
+
driver.get(url)
|
92 |
+
|
93 |
+
# Add random delays to mimic human behavior
|
94 |
+
time.sleep(1) # Adjust this to simulate time for user to read or interact
|
95 |
+
driver.maximize_window()
|
96 |
+
|
97 |
+
|
98 |
+
# Try to find and click the 'Accept Cookies' button
|
99 |
+
# click_accept_cookies(driver)
|
100 |
+
|
101 |
+
# Add more realistic actions like scrolling
|
102 |
+
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/2);")
|
103 |
+
time.sleep(random.uniform(1.1, 1.8)) # Simulate time taken to scroll and read
|
104 |
+
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1.2);")
|
105 |
+
time.sleep(random.uniform(1.1, 1.8))
|
106 |
+
driver.execute_script("window.scrollTo(0, document.body.scrollHeight/1);")
|
107 |
+
time.sleep(random.uniform(1.1, 2.1))
|
108 |
+
html = driver.page_source
|
109 |
+
return html
|
110 |
+
finally:
|
111 |
+
driver.quit()
|
112 |
+
|
113 |
+
def clean_html(html_content):
|
114 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
115 |
+
|
116 |
+
# Remove headers and footers based on common HTML tags or classes
|
117 |
+
for element in soup.find_all(['header', 'footer']):
|
118 |
+
element.decompose() # Remove these tags and their content
|
119 |
+
|
120 |
+
return str(soup)
|
121 |
+
|
122 |
+
|
123 |
+
def html_to_markdown_with_readability(html_content):
|
124 |
+
|
125 |
+
|
126 |
+
cleaned_html = clean_html(html_content)
|
127 |
+
|
128 |
+
# Convert to markdown
|
129 |
+
markdown_converter = html2text.HTML2Text()
|
130 |
+
markdown_converter.ignore_links = False
|
131 |
+
markdown_content = markdown_converter.handle(cleaned_html)
|
132 |
+
|
133 |
+
return markdown_content
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
def save_raw_data(raw_data: str, output_folder: str, file_name: str):
|
138 |
+
"""Save raw markdown data to the specified output folder."""
|
139 |
+
os.makedirs(output_folder, exist_ok=True)
|
140 |
+
raw_output_path = os.path.join(output_folder, file_name)
|
141 |
+
with open(raw_output_path, 'w', encoding='utf-8') as f:
|
142 |
+
f.write(raw_data)
|
143 |
+
print(f"Raw data saved to {raw_output_path}")
|
144 |
+
return raw_output_path
|
145 |
+
|
146 |
+
|
147 |
+
def remove_urls_from_file(file_path):
|
148 |
+
# Regex pattern to find URLs
|
149 |
+
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
|
150 |
+
|
151 |
+
# Construct the new file name
|
152 |
+
base, ext = os.path.splitext(file_path)
|
153 |
+
new_file_path = f"{base}_cleaned{ext}"
|
154 |
+
|
155 |
+
# Read the original markdown content
|
156 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
157 |
+
markdown_content = file.read()
|
158 |
+
|
159 |
+
# Replace all found URLs with an empty string
|
160 |
+
cleaned_content = re.sub(url_pattern, '', markdown_content)
|
161 |
+
|
162 |
+
# Write the cleaned content to a new file
|
163 |
+
with open(new_file_path, 'w', encoding='utf-8') as file:
|
164 |
+
file.write(cleaned_content)
|
165 |
+
print(f"Cleaned file saved as: {new_file_path}")
|
166 |
+
return cleaned_content
|
167 |
+
|
168 |
+
|
169 |
+
def create_dynamic_listing_model(field_names: List[str]) -> Type[BaseModel]:
|
170 |
+
"""
|
171 |
+
Dynamically creates a Pydantic model based on provided fields.
|
172 |
+
field_name is a list of names of the fields to extract from the markdown.
|
173 |
+
"""
|
174 |
+
# Create field definitions using aliases for Field parameters
|
175 |
+
field_definitions = {field: (str, ...) for field in field_names}
|
176 |
+
# Dynamically create the model with all field
|
177 |
+
return create_model('DynamicListingModel', **field_definitions)
|
178 |
+
|
179 |
+
|
180 |
+
def create_listings_container_model(listing_model: Type[BaseModel]) -> Type[BaseModel]:
|
181 |
+
"""
|
182 |
+
Create a container model that holds a list of the given listing model.
|
183 |
+
"""
|
184 |
+
return create_model('DynamicListingsContainer', listings=(List[listing_model], ...))
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
def trim_to_token_limit(text, model, max_tokens=120000):
|
190 |
+
encoder = tiktoken.encoding_for_model(model)
|
191 |
+
tokens = encoder.encode(text)
|
192 |
+
if len(tokens) > max_tokens:
|
193 |
+
trimmed_text = encoder.decode(tokens[:max_tokens])
|
194 |
+
return trimmed_text
|
195 |
+
return text
|
196 |
+
|
197 |
+
def generate_system_message(listing_model: BaseModel) -> str:
|
198 |
+
"""
|
199 |
+
Dynamically generate a system message based on the fields in the provided listing model.
|
200 |
+
"""
|
201 |
+
# Use the model_json_schema() method to introspect the Pydantic model
|
202 |
+
schema_info = listing_model.model_json_schema()
|
203 |
+
|
204 |
+
# Extract field descriptions from the schema
|
205 |
+
field_descriptions = []
|
206 |
+
for field_name, field_info in schema_info["properties"].items():
|
207 |
+
# Get the field type from the schema info
|
208 |
+
field_type = field_info["type"]
|
209 |
+
field_descriptions.append(f'"{field_name}": "{field_type}"')
|
210 |
+
|
211 |
+
# Create the JSON schema structure for the listings
|
212 |
+
schema_structure = ",\n".join(field_descriptions)
|
213 |
+
|
214 |
+
# Generate the system message dynamically
|
215 |
+
system_message = f"""
|
216 |
+
You are an intelligent text extraction and conversion assistant. Your task is to extract structured information
|
217 |
+
from the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,
|
218 |
+
with no additional commentary, explanations, or extraneous information.
|
219 |
+
You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.
|
220 |
+
Please process the following text and provide the output in pure JSON format with no words before or after the JSON:
|
221 |
+
Please ensure the output strictly follows this schema:
|
222 |
+
|
223 |
+
{{
|
224 |
+
"listings": [
|
225 |
+
{{
|
226 |
+
{schema_structure}
|
227 |
+
}}
|
228 |
+
]
|
229 |
+
}} """
|
230 |
+
|
231 |
+
return system_message
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
def format_data(data, DynamicListingsContainer, DynamicListingModel, selected_model):
|
236 |
+
token_counts = {}
|
237 |
+
|
238 |
+
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
|
239 |
+
# Use OpenAI API
|
240 |
+
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
|
241 |
+
completion = client.beta.chat.completions.parse(
|
242 |
+
model=selected_model,
|
243 |
+
messages=[
|
244 |
+
{"role": "system", "content": SYSTEM_MESSAGE},
|
245 |
+
{"role": "user", "content": USER_MESSAGE + data},
|
246 |
+
],
|
247 |
+
response_format=DynamicListingsContainer
|
248 |
+
)
|
249 |
+
# Calculate tokens using tiktoken
|
250 |
+
encoder = tiktoken.encoding_for_model(selected_model)
|
251 |
+
input_token_count = len(encoder.encode(USER_MESSAGE + data))
|
252 |
+
output_token_count = len(encoder.encode(json.dumps(completion.choices[0].message.parsed.dict())))
|
253 |
+
token_counts = {
|
254 |
+
"input_tokens": input_token_count,
|
255 |
+
"output_tokens": output_token_count
|
256 |
+
}
|
257 |
+
return completion.choices[0].message.parsed, token_counts
|
258 |
+
|
259 |
+
elif selected_model == "gemini-1.5-flash":
|
260 |
+
# Use Google Gemini API
|
261 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
262 |
+
model = genai.GenerativeModel('gemini-1.5-flash',
|
263 |
+
generation_config={
|
264 |
+
"response_mime_type": "application/json",
|
265 |
+
"response_schema": DynamicListingsContainer
|
266 |
+
})
|
267 |
+
prompt = SYSTEM_MESSAGE + "\n" + USER_MESSAGE + data
|
268 |
+
# Count input tokens using Gemini's method
|
269 |
+
input_tokens = model.count_tokens(prompt)
|
270 |
+
completion = model.generate_content(prompt)
|
271 |
+
# Extract token counts from usage_metadata
|
272 |
+
usage_metadata = completion.usage_metadata
|
273 |
+
token_counts = {
|
274 |
+
"input_tokens": usage_metadata.prompt_token_count,
|
275 |
+
"output_tokens": usage_metadata.candidates_token_count
|
276 |
+
}
|
277 |
+
return completion.text, token_counts
|
278 |
+
|
279 |
+
elif selected_model == "Llama3.1 8B":
|
280 |
+
|
281 |
+
# Dynamically generate the system message based on the schema
|
282 |
+
sys_message = generate_system_message(DynamicListingModel)
|
283 |
+
# print(SYSTEM_MESSAGE)
|
284 |
+
# Point to the local server
|
285 |
+
client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
|
286 |
+
|
287 |
+
completion = client.chat.completions.create(
|
288 |
+
model=LLAMA_MODEL_FULLNAME, #change this if needed (use a better model)
|
289 |
+
messages=[
|
290 |
+
{"role": "system", "content": sys_message},
|
291 |
+
{"role": "user", "content": USER_MESSAGE + data}
|
292 |
+
],
|
293 |
+
temperature=0.7,
|
294 |
+
|
295 |
+
)
|
296 |
+
|
297 |
+
# Extract the content from the response
|
298 |
+
response_content = completion.choices[0].message.content
|
299 |
+
print(response_content)
|
300 |
+
# Convert the content from JSON string to a Python dictionary
|
301 |
+
parsed_response = json.loads(response_content)
|
302 |
+
|
303 |
+
# Extract token usage
|
304 |
+
token_counts = {
|
305 |
+
"input_tokens": completion.usage.prompt_tokens,
|
306 |
+
"output_tokens": completion.usage.completion_tokens
|
307 |
+
}
|
308 |
+
|
309 |
+
return parsed_response, token_counts
|
310 |
+
elif selected_model== "Groq Llama3.1 70b":
|
311 |
+
|
312 |
+
# Dynamically generate the system message based on the schema
|
313 |
+
sys_message = generate_system_message(DynamicListingModel)
|
314 |
+
# print(SYSTEM_MESSAGE)
|
315 |
+
# Point to the local server
|
316 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"),)
|
317 |
+
|
318 |
+
completion = client.chat.completions.create(
|
319 |
+
messages=[
|
320 |
+
{"role": "system","content": sys_message},
|
321 |
+
{"role": "user","content": USER_MESSAGE + data}
|
322 |
+
],
|
323 |
+
model=GROQ_LLAMA_MODEL_FULLNAME,
|
324 |
+
)
|
325 |
+
|
326 |
+
# Extract the content from the response
|
327 |
+
response_content = completion.choices[0].message.content
|
328 |
+
|
329 |
+
# Convert the content from JSON string to a Python dictionary
|
330 |
+
parsed_response = json.loads(response_content)
|
331 |
+
|
332 |
+
# completion.usage
|
333 |
+
token_counts = {
|
334 |
+
"input_tokens": completion.usage.prompt_tokens,
|
335 |
+
"output_tokens": completion.usage.completion_tokens
|
336 |
+
}
|
337 |
+
|
338 |
+
return parsed_response, token_counts
|
339 |
+
else:
|
340 |
+
raise ValueError(f"Unsupported model: {selected_model}")
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
def save_formatted_data(formatted_data, output_folder: str, json_file_name: str, excel_file_name: str):
|
345 |
+
"""Save formatted data as JSON and Excel in the specified output folder."""
|
346 |
+
os.makedirs(output_folder, exist_ok=True)
|
347 |
+
|
348 |
+
# Parse the formatted data if it's a JSON string (from Gemini API)
|
349 |
+
if isinstance(formatted_data, str):
|
350 |
+
try:
|
351 |
+
formatted_data_dict = json.loads(formatted_data)
|
352 |
+
except json.JSONDecodeError:
|
353 |
+
raise ValueError("The provided formatted data is a string but not valid JSON.")
|
354 |
+
else:
|
355 |
+
# Handle data from OpenAI or other sources
|
356 |
+
formatted_data_dict = formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data
|
357 |
+
|
358 |
+
# Save the formatted data as JSON
|
359 |
+
json_output_path = os.path.join(output_folder, json_file_name)
|
360 |
+
with open(json_output_path, 'w', encoding='utf-8') as f:
|
361 |
+
json.dump(formatted_data_dict, f, indent=4)
|
362 |
+
print(f"Formatted data saved to JSON at {json_output_path}")
|
363 |
+
|
364 |
+
# Prepare data for DataFrame
|
365 |
+
if isinstance(formatted_data_dict, dict):
|
366 |
+
# If the data is a dictionary containing lists, assume these lists are records
|
367 |
+
data_for_df = next(iter(formatted_data_dict.values())) if len(formatted_data_dict) == 1 else formatted_data_dict
|
368 |
+
elif isinstance(formatted_data_dict, list):
|
369 |
+
data_for_df = formatted_data_dict
|
370 |
+
else:
|
371 |
+
raise ValueError("Formatted data is neither a dictionary nor a list, cannot convert to DataFrame")
|
372 |
+
|
373 |
+
# Create DataFrame
|
374 |
+
try:
|
375 |
+
df = pd.DataFrame(data_for_df)
|
376 |
+
print("DataFrame created successfully.")
|
377 |
+
|
378 |
+
# Save the DataFrame to an Excel file
|
379 |
+
excel_output_path = os.path.join(output_folder, excel_file_name)
|
380 |
+
df.to_excel(excel_output_path, index=False)
|
381 |
+
print(f"Formatted data saved to Excel at {excel_output_path}")
|
382 |
+
|
383 |
+
return df
|
384 |
+
except Exception as e:
|
385 |
+
print(f"Error creating DataFrame or saving Excel: {str(e)}")
|
386 |
+
return None
|
387 |
+
|
388 |
+
def calculate_price(token_counts, model):
|
389 |
+
input_token_count = token_counts.get("input_tokens", 0)
|
390 |
+
output_token_count = token_counts.get("output_tokens", 0)
|
391 |
+
|
392 |
+
# Calculate the costs
|
393 |
+
input_cost = input_token_count * PRICING[model]["input"]
|
394 |
+
output_cost = output_token_count * PRICING[model]["output"]
|
395 |
+
total_cost = input_cost + output_cost
|
396 |
+
|
397 |
+
return input_token_count, output_token_count, total_cost
|
398 |
+
|
399 |
+
|
400 |
+
def generate_unique_folder_name(url):
|
401 |
+
timestamp = datetime.now().strftime('%Y_%m_%d__%H_%M_%S')
|
402 |
+
url_name = re.sub(r'\W+', '_', url.split('//')[1].split('/')[0]) # Extract domain name and replace non-alphanumeric characters
|
403 |
+
return f"{url_name}_{timestamp}"
|
404 |
+
|
405 |
+
|
406 |
+
def scrape_multiple_urls(urls, fields, selected_model):
|
407 |
+
output_folder = os.path.join('output', generate_unique_folder_name(urls[0]))
|
408 |
+
os.makedirs(output_folder, exist_ok=True)
|
409 |
+
|
410 |
+
total_input_tokens = 0
|
411 |
+
total_output_tokens = 0
|
412 |
+
total_cost = 0
|
413 |
+
all_data = []
|
414 |
+
markdown = None # We'll store the markdown for the first (or only) URL
|
415 |
+
|
416 |
+
for i, url in enumerate(urls, start=1):
|
417 |
+
raw_html = fetch_html_selenium(url)
|
418 |
+
current_markdown = html_to_markdown_with_readability(raw_html)
|
419 |
+
if i == 1:
|
420 |
+
markdown = current_markdown # Store markdown for the first URL
|
421 |
+
|
422 |
+
input_tokens, output_tokens, cost, formatted_data = scrape_url(url, fields, selected_model, output_folder, i, current_markdown)
|
423 |
+
total_input_tokens += input_tokens
|
424 |
+
total_output_tokens += output_tokens
|
425 |
+
total_cost += cost
|
426 |
+
all_data.append(formatted_data)
|
427 |
+
|
428 |
+
return output_folder, total_input_tokens, total_output_tokens, total_cost, all_data, markdown
|
429 |
+
|
430 |
+
def scrape_url(url: str, fields: List[str], selected_model: str, output_folder: str, file_number: int, markdown: str):
|
431 |
+
"""Scrape a single URL and save the results."""
|
432 |
+
try:
|
433 |
+
# Save raw data
|
434 |
+
save_raw_data(markdown, output_folder, f'rawData_{file_number}.md')
|
435 |
+
|
436 |
+
# Create the dynamic listing model
|
437 |
+
DynamicListingModel = create_dynamic_listing_model(fields)
|
438 |
+
|
439 |
+
# Create the container model that holds a list of the dynamic listing models
|
440 |
+
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
|
441 |
+
|
442 |
+
# Format data
|
443 |
+
formatted_data, token_counts = format_data(markdown, DynamicListingsContainer, DynamicListingModel, selected_model)
|
444 |
+
|
445 |
+
# Save formatted data
|
446 |
+
save_formatted_data(formatted_data, output_folder, f'sorted_data_{file_number}.json', f'sorted_data_{file_number}.xlsx')
|
447 |
+
|
448 |
+
# Calculate and return token usage and cost
|
449 |
+
input_tokens, output_tokens, total_cost = calculate_price(token_counts, selected_model)
|
450 |
+
return input_tokens, output_tokens, total_cost, formatted_data
|
451 |
+
|
452 |
+
except Exception as e:
|
453 |
+
print(f"An error occurred while processing {url}: {e}")
|
454 |
+
return 0, 0, 0, None
|
455 |
+
|
456 |
+
|
457 |
+
|
458 |
|