Spaces:
Sleeping
Sleeping
Rename pagination_detector.py.txt to pagination_detector.py
Browse files
pagination_detector.py.txt → pagination_detector.py
RENAMED
@@ -1,206 +1,206 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
# pagination_detector.py
|
5 |
-
|
6 |
-
import os
|
7 |
-
import json
|
8 |
-
from typing import List, Dict, Tuple, Union
|
9 |
-
from pydantic import BaseModel, Field, ValidationError
|
10 |
-
|
11 |
-
import tiktoken
|
12 |
-
from dotenv import load_dotenv
|
13 |
-
|
14 |
-
from openai import OpenAI
|
15 |
-
import google.generativeai as genai
|
16 |
-
from groq import Groq
|
17 |
-
|
18 |
-
from assets import PROMPT_PAGINATION, PRICING, LLAMA_MODEL_FULLNAME, GROQ_LLAMA_MODEL_FULLNAME
|
19 |
-
|
20 |
-
load_dotenv()
|
21 |
-
import logging
|
22 |
-
|
23 |
-
class PaginationData(BaseModel):
|
24 |
-
page_urls: List[str] = Field(default_factory=list, description="List of pagination URLs, including 'Next' button URL if present")
|
25 |
-
|
26 |
-
def calculate_pagination_price(token_counts: Dict[str, int], model: str) -> float:
|
27 |
-
"""
|
28 |
-
Calculate the price for pagination based on token counts and the selected model.
|
29 |
-
|
30 |
-
Args:
|
31 |
-
token_counts (Dict[str, int]): A dictionary containing 'input_tokens' and 'output_tokens'.
|
32 |
-
model (str): The name of the selected model.
|
33 |
-
|
34 |
-
Returns:
|
35 |
-
float: The total price for the pagination operation.
|
36 |
-
"""
|
37 |
-
input_tokens = token_counts['input_tokens']
|
38 |
-
output_tokens = token_counts['output_tokens']
|
39 |
-
|
40 |
-
input_price = input_tokens * PRICING[model]['input']
|
41 |
-
output_price = output_tokens * PRICING[model]['output']
|
42 |
-
|
43 |
-
return input_price + output_price
|
44 |
-
|
45 |
-
def detect_pagination_elements(url: str, indications: str, selected_model: str, markdown_content: str) -> Tuple[Union[PaginationData, Dict, str], Dict, float]:
|
46 |
-
try:
|
47 |
-
"""
|
48 |
-
Uses AI models to analyze markdown content and extract pagination elements.
|
49 |
-
|
50 |
-
Args:
|
51 |
-
selected_model (str): The name of the OpenAI model to use.
|
52 |
-
markdown_content (str): The markdown content to analyze.
|
53 |
-
|
54 |
-
Returns:
|
55 |
-
Tuple[PaginationData, Dict, float]: Parsed pagination data, token counts, and pagination price.
|
56 |
-
"""
|
57 |
-
prompt_pagination = PROMPT_PAGINATION+"\n The url of the page to extract pagination from "+url+"if the urls that you find are not complete combine them intelligently in a way that fit the pattern **ALWAYS GIVE A FULL URL**"
|
58 |
-
if indications != "":
|
59 |
-
prompt_pagination +=PROMPT_PAGINATION+"\n\n these are the users indications that, pay special attention to them: "+indications+"\n\n below are the markdowns of the website: \n\n"
|
60 |
-
else:
|
61 |
-
prompt_pagination +=PROMPT_PAGINATION+"\n There are no user indications in this case just apply the logic described. \n\n below are the markdowns of the website: \n\n"
|
62 |
-
|
63 |
-
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
|
64 |
-
# Use OpenAI API
|
65 |
-
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
|
66 |
-
completion = client.beta.chat.completions.parse(
|
67 |
-
model=selected_model,
|
68 |
-
messages=[
|
69 |
-
{"role": "system", "content": prompt_pagination},
|
70 |
-
{"role": "user", "content": markdown_content},
|
71 |
-
],
|
72 |
-
response_format=PaginationData
|
73 |
-
)
|
74 |
-
|
75 |
-
# Extract the parsed response
|
76 |
-
parsed_response = completion.choices[0].message.parsed
|
77 |
-
|
78 |
-
# Calculate tokens using tiktoken
|
79 |
-
encoder = tiktoken.encoding_for_model(selected_model)
|
80 |
-
input_token_count = len(encoder.encode(markdown_content))
|
81 |
-
output_token_count = len(encoder.encode(json.dumps(parsed_response.dict())))
|
82 |
-
token_counts = {
|
83 |
-
"input_tokens": input_token_count,
|
84 |
-
"output_tokens": output_token_count
|
85 |
-
}
|
86 |
-
|
87 |
-
# Calculate the price
|
88 |
-
pagination_price = calculate_pagination_price(token_counts, selected_model)
|
89 |
-
|
90 |
-
return parsed_response, token_counts, pagination_price
|
91 |
-
|
92 |
-
elif selected_model == "gemini-1.5-flash":
|
93 |
-
# Use Google Gemini API
|
94 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
95 |
-
model = genai.GenerativeModel(
|
96 |
-
'gemini-1.5-flash',
|
97 |
-
generation_config={
|
98 |
-
"response_mime_type": "application/json",
|
99 |
-
"response_schema": PaginationData
|
100 |
-
}
|
101 |
-
)
|
102 |
-
prompt = f"{prompt_pagination}\n{markdown_content}"
|
103 |
-
# Count input tokens using Gemini's method
|
104 |
-
input_tokens = model.count_tokens(prompt)
|
105 |
-
completion = model.generate_content(prompt)
|
106 |
-
# Extract token counts from usage_metadata
|
107 |
-
usage_metadata = completion.usage_metadata
|
108 |
-
token_counts = {
|
109 |
-
"input_tokens": usage_metadata.prompt_token_count,
|
110 |
-
"output_tokens": usage_metadata.candidates_token_count
|
111 |
-
}
|
112 |
-
# Get the result
|
113 |
-
response_content = completion.text
|
114 |
-
|
115 |
-
# Log the response content and its type
|
116 |
-
logging.info(f"Gemini Flash response type: {type(response_content)}")
|
117 |
-
logging.info(f"Gemini Flash response content: {response_content}")
|
118 |
-
|
119 |
-
# Try to parse the response as JSON
|
120 |
-
try:
|
121 |
-
parsed_data = json.loads(response_content)
|
122 |
-
if isinstance(parsed_data, dict) and 'page_urls' in parsed_data:
|
123 |
-
pagination_data = PaginationData(**parsed_data)
|
124 |
-
else:
|
125 |
-
pagination_data = PaginationData(page_urls=[])
|
126 |
-
except json.JSONDecodeError:
|
127 |
-
logging.error("Failed to parse Gemini Flash response as JSON")
|
128 |
-
pagination_data = PaginationData(page_urls=[])
|
129 |
-
|
130 |
-
# Calculate the price
|
131 |
-
pagination_price = calculate_pagination_price(token_counts, selected_model)
|
132 |
-
|
133 |
-
return pagination_data, token_counts, pagination_price
|
134 |
-
|
135 |
-
elif selected_model == "Llama3.1 8B":
|
136 |
-
# Use Llama model via OpenAI API pointing to local server
|
137 |
-
openai.api_key = "lm-studio"
|
138 |
-
openai.api_base = "http://localhost:1234/v1"
|
139 |
-
response = openai.ChatCompletion.create(
|
140 |
-
model=LLAMA_MODEL_FULLNAME,
|
141 |
-
messages=[
|
142 |
-
{"role": "system", "content": prompt_pagination},
|
143 |
-
{"role": "user", "content": markdown_content},
|
144 |
-
],
|
145 |
-
temperature=0.7,
|
146 |
-
)
|
147 |
-
response_content = response['choices'][0]['message']['content'].strip()
|
148 |
-
# Try to parse the JSON
|
149 |
-
try:
|
150 |
-
pagination_data = json.loads(response_content)
|
151 |
-
except json.JSONDecodeError:
|
152 |
-
pagination_data = {"next_buttons": [], "page_urls": []}
|
153 |
-
# Token counts
|
154 |
-
token_counts = {
|
155 |
-
"input_tokens": response['usage']['prompt_tokens'],
|
156 |
-
"output_tokens": response['usage']['completion_tokens']
|
157 |
-
}
|
158 |
-
# Calculate the price
|
159 |
-
pagination_price = calculate_pagination_price(token_counts, selected_model)
|
160 |
-
|
161 |
-
return pagination_data, token_counts, pagination_price
|
162 |
-
|
163 |
-
elif selected_model == "Groq Llama3.1 70b":
|
164 |
-
# Use Groq client
|
165 |
-
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
166 |
-
response = client.chat.completions.create(
|
167 |
-
model=GROQ_LLAMA_MODEL_FULLNAME,
|
168 |
-
messages=[
|
169 |
-
{"role": "system", "content": prompt_pagination},
|
170 |
-
{"role": "user", "content": markdown_content},
|
171 |
-
],
|
172 |
-
)
|
173 |
-
response_content = response.choices[0].message.content.strip()
|
174 |
-
# Try to parse the JSON
|
175 |
-
try:
|
176 |
-
pagination_data = json.loads(response_content)
|
177 |
-
except json.JSONDecodeError:
|
178 |
-
pagination_data = {"page_urls": []}
|
179 |
-
# Token counts
|
180 |
-
token_counts = {
|
181 |
-
"input_tokens": response.usage.prompt_tokens,
|
182 |
-
"output_tokens": response.usage.completion_tokens
|
183 |
-
}
|
184 |
-
# Calculate the price
|
185 |
-
pagination_price = calculate_pagination_price(token_counts, selected_model)
|
186 |
-
|
187 |
-
# Ensure the pagination_data is a dictionary
|
188 |
-
if isinstance(pagination_data, PaginationData):
|
189 |
-
pagination_data = pagination_data.dict()
|
190 |
-
elif not isinstance(pagination_data, dict):
|
191 |
-
pagination_data = {"page_urls": []}
|
192 |
-
|
193 |
-
return pagination_data, token_counts, pagination_price
|
194 |
-
|
195 |
-
else:
|
196 |
-
raise ValueError(f"Unsupported model: {selected_model}")
|
197 |
-
|
198 |
-
except Exception as e:
|
199 |
-
logging.error(f"An error occurred in detect_pagination_elements: {e}")
|
200 |
-
# Return default values if an error occurs
|
201 |
-
return PaginationData(page_urls=[]), {"input_tokens": 0, "output_tokens": 0}, 0.0
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
# pagination_detector.py
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
from typing import List, Dict, Tuple, Union
|
9 |
+
from pydantic import BaseModel, Field, ValidationError
|
10 |
+
|
11 |
+
import tiktoken
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
from openai import OpenAI
|
15 |
+
import google.generativeai as genai
|
16 |
+
from groq import Groq
|
17 |
+
|
18 |
+
from assets import PROMPT_PAGINATION, PRICING, LLAMA_MODEL_FULLNAME, GROQ_LLAMA_MODEL_FULLNAME
|
19 |
+
|
20 |
+
load_dotenv()
|
21 |
+
import logging
|
22 |
+
|
23 |
+
class PaginationData(BaseModel):
|
24 |
+
page_urls: List[str] = Field(default_factory=list, description="List of pagination URLs, including 'Next' button URL if present")
|
25 |
+
|
26 |
+
def calculate_pagination_price(token_counts: Dict[str, int], model: str) -> float:
|
27 |
+
"""
|
28 |
+
Calculate the price for pagination based on token counts and the selected model.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
token_counts (Dict[str, int]): A dictionary containing 'input_tokens' and 'output_tokens'.
|
32 |
+
model (str): The name of the selected model.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
float: The total price for the pagination operation.
|
36 |
+
"""
|
37 |
+
input_tokens = token_counts['input_tokens']
|
38 |
+
output_tokens = token_counts['output_tokens']
|
39 |
+
|
40 |
+
input_price = input_tokens * PRICING[model]['input']
|
41 |
+
output_price = output_tokens * PRICING[model]['output']
|
42 |
+
|
43 |
+
return input_price + output_price
|
44 |
+
|
45 |
+
def detect_pagination_elements(url: str, indications: str, selected_model: str, markdown_content: str) -> Tuple[Union[PaginationData, Dict, str], Dict, float]:
|
46 |
+
try:
|
47 |
+
"""
|
48 |
+
Uses AI models to analyze markdown content and extract pagination elements.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
selected_model (str): The name of the OpenAI model to use.
|
52 |
+
markdown_content (str): The markdown content to analyze.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
Tuple[PaginationData, Dict, float]: Parsed pagination data, token counts, and pagination price.
|
56 |
+
"""
|
57 |
+
prompt_pagination = PROMPT_PAGINATION+"\n The url of the page to extract pagination from "+url+"if the urls that you find are not complete combine them intelligently in a way that fit the pattern **ALWAYS GIVE A FULL URL**"
|
58 |
+
if indications != "":
|
59 |
+
prompt_pagination +=PROMPT_PAGINATION+"\n\n these are the users indications that, pay special attention to them: "+indications+"\n\n below are the markdowns of the website: \n\n"
|
60 |
+
else:
|
61 |
+
prompt_pagination +=PROMPT_PAGINATION+"\n There are no user indications in this case just apply the logic described. \n\n below are the markdowns of the website: \n\n"
|
62 |
+
|
63 |
+
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
|
64 |
+
# Use OpenAI API
|
65 |
+
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
|
66 |
+
completion = client.beta.chat.completions.parse(
|
67 |
+
model=selected_model,
|
68 |
+
messages=[
|
69 |
+
{"role": "system", "content": prompt_pagination},
|
70 |
+
{"role": "user", "content": markdown_content},
|
71 |
+
],
|
72 |
+
response_format=PaginationData
|
73 |
+
)
|
74 |
+
|
75 |
+
# Extract the parsed response
|
76 |
+
parsed_response = completion.choices[0].message.parsed
|
77 |
+
|
78 |
+
# Calculate tokens using tiktoken
|
79 |
+
encoder = tiktoken.encoding_for_model(selected_model)
|
80 |
+
input_token_count = len(encoder.encode(markdown_content))
|
81 |
+
output_token_count = len(encoder.encode(json.dumps(parsed_response.dict())))
|
82 |
+
token_counts = {
|
83 |
+
"input_tokens": input_token_count,
|
84 |
+
"output_tokens": output_token_count
|
85 |
+
}
|
86 |
+
|
87 |
+
# Calculate the price
|
88 |
+
pagination_price = calculate_pagination_price(token_counts, selected_model)
|
89 |
+
|
90 |
+
return parsed_response, token_counts, pagination_price
|
91 |
+
|
92 |
+
elif selected_model == "gemini-1.5-flash":
|
93 |
+
# Use Google Gemini API
|
94 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
95 |
+
model = genai.GenerativeModel(
|
96 |
+
'gemini-1.5-flash',
|
97 |
+
generation_config={
|
98 |
+
"response_mime_type": "application/json",
|
99 |
+
"response_schema": PaginationData
|
100 |
+
}
|
101 |
+
)
|
102 |
+
prompt = f"{prompt_pagination}\n{markdown_content}"
|
103 |
+
# Count input tokens using Gemini's method
|
104 |
+
input_tokens = model.count_tokens(prompt)
|
105 |
+
completion = model.generate_content(prompt)
|
106 |
+
# Extract token counts from usage_metadata
|
107 |
+
usage_metadata = completion.usage_metadata
|
108 |
+
token_counts = {
|
109 |
+
"input_tokens": usage_metadata.prompt_token_count,
|
110 |
+
"output_tokens": usage_metadata.candidates_token_count
|
111 |
+
}
|
112 |
+
# Get the result
|
113 |
+
response_content = completion.text
|
114 |
+
|
115 |
+
# Log the response content and its type
|
116 |
+
logging.info(f"Gemini Flash response type: {type(response_content)}")
|
117 |
+
logging.info(f"Gemini Flash response content: {response_content}")
|
118 |
+
|
119 |
+
# Try to parse the response as JSON
|
120 |
+
try:
|
121 |
+
parsed_data = json.loads(response_content)
|
122 |
+
if isinstance(parsed_data, dict) and 'page_urls' in parsed_data:
|
123 |
+
pagination_data = PaginationData(**parsed_data)
|
124 |
+
else:
|
125 |
+
pagination_data = PaginationData(page_urls=[])
|
126 |
+
except json.JSONDecodeError:
|
127 |
+
logging.error("Failed to parse Gemini Flash response as JSON")
|
128 |
+
pagination_data = PaginationData(page_urls=[])
|
129 |
+
|
130 |
+
# Calculate the price
|
131 |
+
pagination_price = calculate_pagination_price(token_counts, selected_model)
|
132 |
+
|
133 |
+
return pagination_data, token_counts, pagination_price
|
134 |
+
|
135 |
+
elif selected_model == "Llama3.1 8B":
|
136 |
+
# Use Llama model via OpenAI API pointing to local server
|
137 |
+
openai.api_key = "lm-studio"
|
138 |
+
openai.api_base = "http://localhost:1234/v1"
|
139 |
+
response = openai.ChatCompletion.create(
|
140 |
+
model=LLAMA_MODEL_FULLNAME,
|
141 |
+
messages=[
|
142 |
+
{"role": "system", "content": prompt_pagination},
|
143 |
+
{"role": "user", "content": markdown_content},
|
144 |
+
],
|
145 |
+
temperature=0.7,
|
146 |
+
)
|
147 |
+
response_content = response['choices'][0]['message']['content'].strip()
|
148 |
+
# Try to parse the JSON
|
149 |
+
try:
|
150 |
+
pagination_data = json.loads(response_content)
|
151 |
+
except json.JSONDecodeError:
|
152 |
+
pagination_data = {"next_buttons": [], "page_urls": []}
|
153 |
+
# Token counts
|
154 |
+
token_counts = {
|
155 |
+
"input_tokens": response['usage']['prompt_tokens'],
|
156 |
+
"output_tokens": response['usage']['completion_tokens']
|
157 |
+
}
|
158 |
+
# Calculate the price
|
159 |
+
pagination_price = calculate_pagination_price(token_counts, selected_model)
|
160 |
+
|
161 |
+
return pagination_data, token_counts, pagination_price
|
162 |
+
|
163 |
+
elif selected_model == "Groq Llama3.1 70b":
|
164 |
+
# Use Groq client
|
165 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
166 |
+
response = client.chat.completions.create(
|
167 |
+
model=GROQ_LLAMA_MODEL_FULLNAME,
|
168 |
+
messages=[
|
169 |
+
{"role": "system", "content": prompt_pagination},
|
170 |
+
{"role": "user", "content": markdown_content},
|
171 |
+
],
|
172 |
+
)
|
173 |
+
response_content = response.choices[0].message.content.strip()
|
174 |
+
# Try to parse the JSON
|
175 |
+
try:
|
176 |
+
pagination_data = json.loads(response_content)
|
177 |
+
except json.JSONDecodeError:
|
178 |
+
pagination_data = {"page_urls": []}
|
179 |
+
# Token counts
|
180 |
+
token_counts = {
|
181 |
+
"input_tokens": response.usage.prompt_tokens,
|
182 |
+
"output_tokens": response.usage.completion_tokens
|
183 |
+
}
|
184 |
+
# Calculate the price
|
185 |
+
pagination_price = calculate_pagination_price(token_counts, selected_model)
|
186 |
+
|
187 |
+
# Ensure the pagination_data is a dictionary
|
188 |
+
if isinstance(pagination_data, PaginationData):
|
189 |
+
pagination_data = pagination_data.dict()
|
190 |
+
elif not isinstance(pagination_data, dict):
|
191 |
+
pagination_data = {"page_urls": []}
|
192 |
+
|
193 |
+
return pagination_data, token_counts, pagination_price
|
194 |
+
|
195 |
+
else:
|
196 |
+
raise ValueError(f"Unsupported model: {selected_model}")
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
logging.error(f"An error occurred in detect_pagination_elements: {e}")
|
200 |
+
# Return default values if an error occurs
|
201 |
+
return PaginationData(page_urls=[]), {"input_tokens": 0, "output_tokens": 0}, 0.0
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
|