File size: 8,703 Bytes
c04f6ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a979d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206



# pagination_detector.py

import os
import json
from typing import List, Dict, Tuple, Union
from pydantic import BaseModel, Field, ValidationError

import tiktoken
from dotenv import load_dotenv

from openai import OpenAI
import google.generativeai as genai
from groq import Groq

from assets import PROMPT_PAGINATION, PRICING, LLAMA_MODEL_FULLNAME, GROQ_LLAMA_MODEL_FULLNAME

load_dotenv()
import logging

class PaginationData(BaseModel):
    page_urls: List[str] = Field(default_factory=list, description="List of pagination URLs, including 'Next' button URL if present")

def calculate_pagination_price(token_counts: Dict[str, int], model: str) -> float:
    """
    Calculate the price for pagination based on token counts and the selected model.
    
    Args:
    token_counts (Dict[str, int]): A dictionary containing 'input_tokens' and 'output_tokens'.
    model (str): The name of the selected model.

    Returns:
    float: The total price for the pagination operation.
    """
    input_tokens = token_counts['input_tokens']
    output_tokens = token_counts['output_tokens']
    
    input_price = input_tokens * PRICING[model]['input']
    output_price = output_tokens * PRICING[model]['output']
    
    return input_price + output_price

def detect_pagination_elements(url: str, indications: str, selected_model: str, markdown_content: str) -> Tuple[Union[PaginationData, Dict, str], Dict, float]:
    try:
        """
        Uses AI models to analyze markdown content and extract pagination elements.

        Args:
            selected_model (str): The name of the OpenAI model to use.
            markdown_content (str): The markdown content to analyze.

        Returns:
            Tuple[PaginationData, Dict, float]: Parsed pagination data, token counts, and pagination price.
        """ 
        prompt_pagination = PROMPT_PAGINATION+"\n The url of the page to extract pagination from   "+url+"if the urls that you find are not complete combine them intelligently in a way that fit the pattern **ALWAYS GIVE A FULL URL**"
        if indications != "":
            prompt_pagination +=PROMPT_PAGINATION+"\n\n these are the users indications that, pay special attention to them: "+indications+"\n\n below are the markdowns of the website: \n\n"
        else:
            prompt_pagination +=PROMPT_PAGINATION+"\n There are no user indications in this case just apply the logic described. \n\n below are the markdowns of the website: \n\n"

        if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
            # Use OpenAI API
            client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
            completion = client.beta.chat.completions.parse(
                model=selected_model,
                messages=[
                    {"role": "system", "content": prompt_pagination},
                    {"role": "user", "content": markdown_content},
                ],
                response_format=PaginationData
            )

            # Extract the parsed response
            parsed_response = completion.choices[0].message.parsed

            # Calculate tokens using tiktoken
            encoder = tiktoken.encoding_for_model(selected_model)
            input_token_count = len(encoder.encode(markdown_content))
            output_token_count = len(encoder.encode(json.dumps(parsed_response.dict())))
            token_counts = {
                "input_tokens": input_token_count,
                "output_tokens": output_token_count
            }

            # Calculate the price
            pagination_price = calculate_pagination_price(token_counts, selected_model)

            return parsed_response, token_counts, pagination_price

        elif selected_model == "gemini-1.5-flash":
            # Use Google Gemini API
            genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
            model = genai.GenerativeModel(
                'gemini-1.5-flash',
                generation_config={
                    "response_mime_type": "application/json",
                    "response_schema": PaginationData
                }
            )
            prompt = f"{prompt_pagination}\n{markdown_content}"
            # Count input tokens using Gemini's method
            input_tokens = model.count_tokens(prompt)
            completion = model.generate_content(prompt)
            # Extract token counts from usage_metadata
            usage_metadata = completion.usage_metadata
            token_counts = {
                "input_tokens": usage_metadata.prompt_token_count,
                "output_tokens": usage_metadata.candidates_token_count
            }
            # Get the result
            response_content = completion.text
            
            # Log the response content and its type
            logging.info(f"Gemini Flash response type: {type(response_content)}")
            logging.info(f"Gemini Flash response content: {response_content}")
            
            # Try to parse the response as JSON
            try:
                parsed_data = json.loads(response_content)
                if isinstance(parsed_data, dict) and 'page_urls' in parsed_data:
                    pagination_data = PaginationData(**parsed_data)
                else:
                    pagination_data = PaginationData(page_urls=[])
            except json.JSONDecodeError:
                logging.error("Failed to parse Gemini Flash response as JSON")
                pagination_data = PaginationData(page_urls=[])

            # Calculate the price
            pagination_price = calculate_pagination_price(token_counts, selected_model)

            return pagination_data, token_counts, pagination_price

        elif selected_model == "Llama3.1 8B":
            # Use Llama model via OpenAI API pointing to local server
            openai.api_key = "lm-studio"
            openai.api_base = "http://localhost:1234/v1"
            response = openai.ChatCompletion.create(
                model=LLAMA_MODEL_FULLNAME,
                messages=[
                    {"role": "system", "content": prompt_pagination},
                    {"role": "user", "content": markdown_content},
                ],
                temperature=0.7,
            )
            response_content = response['choices'][0]['message']['content'].strip()
            # Try to parse the JSON
            try:
                pagination_data = json.loads(response_content)
            except json.JSONDecodeError:
                pagination_data = {"next_buttons": [], "page_urls": []}
            # Token counts
            token_counts = {
                "input_tokens": response['usage']['prompt_tokens'],
                "output_tokens": response['usage']['completion_tokens']
            }
            # Calculate the price
            pagination_price = calculate_pagination_price(token_counts, selected_model)

            return pagination_data, token_counts, pagination_price

        elif selected_model == "Groq Llama3.1 70b":
            # Use Groq client
            client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
            response = client.chat.completions.create(
                model=GROQ_LLAMA_MODEL_FULLNAME,
                messages=[
                    {"role": "system", "content": prompt_pagination},
                    {"role": "user", "content": markdown_content},
                ],
            )
            response_content = response.choices[0].message.content.strip()
            # Try to parse the JSON
            try:
                pagination_data = json.loads(response_content)
            except json.JSONDecodeError:
                pagination_data = {"page_urls": []}
            # Token counts
            token_counts = {
                "input_tokens": response.usage.prompt_tokens,
                "output_tokens": response.usage.completion_tokens
            }
            # Calculate the price
            pagination_price = calculate_pagination_price(token_counts, selected_model)

            # Ensure the pagination_data is a dictionary
            if isinstance(pagination_data, PaginationData):
                pagination_data = pagination_data.dict()
            elif not isinstance(pagination_data, dict):
                pagination_data = {"page_urls": []}

            return pagination_data, token_counts, pagination_price

        else:
            raise ValueError(f"Unsupported model: {selected_model}")

    except Exception as e:
        logging.error(f"An error occurred in detect_pagination_elements: {e}")
        # Return default values if an error occurs
        return PaginationData(page_urls=[]), {"input_tokens": 0, "output_tokens": 0}, 0.0