Mohammed Abdeldayem commited on
Commit
3fa08b4
·
verified ·
1 Parent(s): 9711b09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -1
app.py CHANGED
@@ -16,19 +16,23 @@ def init():
16
 
17
  # Step 1: Load the YOLOv5 model from Hugging Face
18
  try:
 
19
  object_detection_model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5/weights/best14.pt', trust_repo=True)
20
  print("YOLOv5 model loaded successfully.")
21
  except Exception as e:
22
  print(f"Error loading YOLOv5 model: {e}")
 
23
 
24
  # Step 2: Load the ViT-GPT2 captioning model from Hugging Face
25
  try:
 
26
  captioning_model = VisionEncoderDecoderModel.from_pretrained("motheecreator/ViT-GPT2-Image-Captioning")
27
  tokenizer = AutoTokenizer.from_pretrained("motheecreator/ViT-GPT2-Image-Captioning")
28
  captioning_processor = AutoImageProcessor.from_pretrained("motheecreator/ViT-GPT2-Image-Captioning")
29
  print("ViT-GPT2 model loaded successfully.")
30
  except Exception as e:
31
  print(f"Error loading captioning model: {e}")
 
32
 
33
  # Utility function to crop objects from the image based on bounding boxes
34
  def crop_objects(image, boxes):
@@ -44,7 +48,7 @@ def process_image(image):
44
 
45
  # Ensure models are loaded
46
  if object_detection_model is None or captioning_model is None or tokenizer is None or captioning_processor is None:
47
- init() # Call init to load models
48
 
49
  try:
50
  # Step 1: Perform object detection with YOLOv5
 
16
 
17
  # Step 1: Load the YOLOv5 model from Hugging Face
18
  try:
19
+ print("Loading YOLOv5 model...")
20
  object_detection_model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5/weights/best14.pt', trust_repo=True)
21
  print("YOLOv5 model loaded successfully.")
22
  except Exception as e:
23
  print(f"Error loading YOLOv5 model: {e}")
24
+ object_detection_model = None
25
 
26
  # Step 2: Load the ViT-GPT2 captioning model from Hugging Face
27
  try:
28
+ print("Loading ViT-GPT2 model...")
29
  captioning_model = VisionEncoderDecoderModel.from_pretrained("motheecreator/ViT-GPT2-Image-Captioning")
30
  tokenizer = AutoTokenizer.from_pretrained("motheecreator/ViT-GPT2-Image-Captioning")
31
  captioning_processor = AutoImageProcessor.from_pretrained("motheecreator/ViT-GPT2-Image-Captioning")
32
  print("ViT-GPT2 model loaded successfully.")
33
  except Exception as e:
34
  print(f"Error loading captioning model: {e}")
35
+ captioning_model, tokenizer, captioning_processor = None, None, None
36
 
37
  # Utility function to crop objects from the image based on bounding boxes
38
  def crop_objects(image, boxes):
 
48
 
49
  # Ensure models are loaded
50
  if object_detection_model is None or captioning_model is None or tokenizer is None or captioning_processor is None:
51
+ return None, {"error": "Models are not loaded properly"}, None
52
 
53
  try:
54
  # Step 1: Perform object detection with YOLOv5