Spaces:
Sleeping
Sleeping
Mohammed Abdeldayem
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,19 @@ from PIL import Image
|
|
4 |
from torchvision.transforms.functional import crop
|
5 |
import gradio as gr
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Load models during initialization
|
8 |
def init():
|
9 |
global object_detection_model, captioning_model, tokenizer, captioning_processor
|
10 |
|
11 |
# Step 1: Load the YOLOv5 model from Hugging Face
|
12 |
try:
|
13 |
-
# Load the YOLOv5 model with trust_repo=True to skip the warning
|
14 |
object_detection_model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5/weights/best14.pt', trust_repo=True)
|
15 |
-
# Assuming model is locally available
|
16 |
print("YOLOv5 model loaded successfully.")
|
17 |
except Exception as e:
|
18 |
print(f"Error loading YOLOv5 model: {e}")
|
@@ -36,6 +40,12 @@ def crop_objects(image, boxes):
|
|
36 |
|
37 |
# Gradio interface function
|
38 |
def process_image(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
try:
|
40 |
# Step 1: Perform object detection with YOLOv5
|
41 |
results = object_detection_model(image)
|
@@ -78,7 +88,7 @@ def process_image(image):
|
|
78 |
# Initialize models
|
79 |
init()
|
80 |
|
81 |
-
#
|
82 |
interface = gr.Interface(
|
83 |
fn=process_image, # Function to run
|
84 |
inputs=gr.Image(type="pil"), # Input: Image upload
|
@@ -88,6 +98,5 @@ interface = gr.Interface(
|
|
88 |
live=True
|
89 |
)
|
90 |
|
91 |
-
|
92 |
# Launch the Gradio app
|
93 |
interface.launch()
|
|
|
4 |
from torchvision.transforms.functional import crop
|
5 |
import gradio as gr
|
6 |
|
7 |
+
# Global variables for models
|
8 |
+
object_detection_model = None
|
9 |
+
captioning_model = None
|
10 |
+
tokenizer = None
|
11 |
+
captioning_processor = None
|
12 |
+
|
13 |
# Load models during initialization
|
14 |
def init():
|
15 |
global object_detection_model, captioning_model, tokenizer, captioning_processor
|
16 |
|
17 |
# Step 1: Load the YOLOv5 model from Hugging Face
|
18 |
try:
|
|
|
19 |
object_detection_model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5/weights/best14.pt', trust_repo=True)
|
|
|
20 |
print("YOLOv5 model loaded successfully.")
|
21 |
except Exception as e:
|
22 |
print(f"Error loading YOLOv5 model: {e}")
|
|
|
40 |
|
41 |
# Gradio interface function
|
42 |
def process_image(image):
|
43 |
+
global object_detection_model, captioning_model, tokenizer, captioning_processor
|
44 |
+
|
45 |
+
# Ensure models are loaded
|
46 |
+
if object_detection_model is None or captioning_model is None or tokenizer is None or captioning_processor is None:
|
47 |
+
init() # Call init to load models
|
48 |
+
|
49 |
try:
|
50 |
# Step 1: Perform object detection with YOLOv5
|
51 |
results = object_detection_model(image)
|
|
|
88 |
# Initialize models
|
89 |
init()
|
90 |
|
91 |
+
# Gradio Interface
|
92 |
interface = gr.Interface(
|
93 |
fn=process_image, # Function to run
|
94 |
inputs=gr.Image(type="pil"), # Input: Image upload
|
|
|
98 |
live=True
|
99 |
)
|
100 |
|
|
|
101 |
# Launch the Gradio app
|
102 |
interface.launch()
|