mbahrami's picture
Update app.py
eacbe96
raw
history blame
2.46 kB
import streamlit as st
import pandas as pd
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
@st.cache(allow_output_mutation=True)
def get_model(model):
return pipeline("fill-mask", model=model, top_k=100)#set the maximum of tokens to be retrieved after each inference to model
HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight)
st.caption("This is a simple auto-completion where the next token is predicted per probability and a weigh if appears in user's history")
history_keyword_text = st.text_input("Enter users's history keywords (optional, i.e., 'Gates')", value="")
#history_keyword_text=''
text = st.text_input("Enter a text for auto completion...", value='Where is Bill')
#text='Where is Bill'
semantic_text = st.text_input("Enter users's history semantic (optional, i.e., 'Microsoft or President')", value="Microsoft")
#semantic_text='President'
model = st.selectbox("choose a model", ["roberta-base", "bert-base-uncased"])
#model='roberta-base'
nlp = get_model(model)
#data_load_state = st.text('Loading model...')
if text:
# data_load_state = st.text('Inference to model...')
result = nlp(text+' '+nlp.tokenizer.mask_token)
# data_load_state.text('')
sem_list=[_.strip() for _ in semantic_text.split(',')]
if len(semantic_text):
predicted_seq=[rec['sequence'] for rec in result]
predicted_embeddings = semantic_model.encode(predicted_seq, convert_to_tensor=True)
semantic_history_embeddings = semantic_model.encode(sem_list, convert_to_tensor=True)
cosine_scores = util.cos_sim(predicted_embeddings, semantic_history_embeddings)
for index, r in enumerate(result):
if len(semantic_text):
# for j_index in range(len(sem_list)):
if len(r['token_str'])>2: #skip spcial chars such as "?"
result[index]['score']+=float(sum(cosine_scores[index]))
if r['token_str'].lower().strip() in history_keyword_text.lower().strip() and len(r['token_str'].lower().strip())>1:
#found from history, then increase the score of tokens
result[index]['score']*=HISTORY_WEIGHT
#sort the results
df=pd.DataFrame(result).sort_values(by='score', ascending=False)
# show the results as a table
st.table(df)