Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
| 7 |
|
| 8 |
@st.cache(allow_output_mutation=True)
|
| 9 |
def get_model(model):
|
| 10 |
-
return pipeline("fill-mask", model=model, top_k=100)#
|
| 11 |
|
| 12 |
|
| 13 |
HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight)
|
|
@@ -15,28 +15,37 @@ HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it
|
|
| 15 |
st.caption("This is a simple auto-completion where the next token is predicted per probability and a weigh if appears in user's history")
|
| 16 |
|
| 17 |
history_keyword_text = st.text_input("Enter users's history keywords (optional, i.e., 'Gates')", value="")
|
|
|
|
| 18 |
|
| 19 |
text = st.text_input("Enter a text for auto completion...", value='Where is Bill')
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
-
|
|
|
|
| 25 |
nlp = get_model(model)
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
if text:
|
| 28 |
-
data_load_state = st.text('Inference to model...')
|
| 29 |
result = nlp(text+' '+nlp.tokenizer.mask_token)
|
| 30 |
-
data_load_state.text('')
|
| 31 |
-
|
| 32 |
-
if len(semantic_text):
|
| 33 |
-
|
| 34 |
-
|
|
|
|
| 35 |
cosine_scores = util.cos_sim(predicted_embeddings, semantic_history_embeddings)
|
| 36 |
|
| 37 |
for index, r in enumerate(result):
|
| 38 |
if len(semantic_text):
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
if r['token_str'].lower().strip() in history_keyword_text.lower().strip() and len(r['token_str'].lower().strip())>1:
|
| 41 |
#found from history, then increase the score of tokens
|
| 42 |
result[index]['score']*=HISTORY_WEIGHT
|
|
@@ -44,5 +53,5 @@ if text:
|
|
| 44 |
#sort the results
|
| 45 |
df=pd.DataFrame(result).sort_values(by='score', ascending=False)
|
| 46 |
|
| 47 |
-
|
| 48 |
st.table(df)
|
|
|
|
| 7 |
|
| 8 |
@st.cache(allow_output_mutation=True)
|
| 9 |
def get_model(model):
|
| 10 |
+
return pipeline("fill-mask", model=model, top_k=100)#set the maximum of tokens to be retrieved after each inference to model
|
| 11 |
|
| 12 |
|
| 13 |
HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight)
|
|
|
|
| 15 |
st.caption("This is a simple auto-completion where the next token is predicted per probability and a weigh if appears in user's history")
|
| 16 |
|
| 17 |
history_keyword_text = st.text_input("Enter users's history keywords (optional, i.e., 'Gates')", value="")
|
| 18 |
+
#history_keyword_text=''
|
| 19 |
|
| 20 |
text = st.text_input("Enter a text for auto completion...", value='Where is Bill')
|
| 21 |
+
#text='Where is Bill'
|
| 22 |
|
| 23 |
+
semantic_text = st.text_input("Enter users's history semantic (optional, i.e., 'Microsoft or President')", value="Microsoft")
|
| 24 |
+
#semantic_text='President'
|
| 25 |
|
| 26 |
+
model = st.selectbox("choose a model", ["roberta-base", "bert-base-uncased"])
|
| 27 |
+
#model='roberta-base'
|
| 28 |
nlp = get_model(model)
|
| 29 |
+
#data_load_state = st.text('Loading model...')
|
| 30 |
+
|
| 31 |
+
|
| 32 |
|
| 33 |
if text:
|
| 34 |
+
# data_load_state = st.text('Inference to model...')
|
| 35 |
result = nlp(text+' '+nlp.tokenizer.mask_token)
|
| 36 |
+
# data_load_state.text('')
|
| 37 |
+
sem_list=[_.strip() for _ in semantic_text.split(',')]
|
| 38 |
+
if len(semantic_text):
|
| 39 |
+
predicted_seq=[rec['sequence'] for rec in result]
|
| 40 |
+
predicted_embeddings = semantic_model.encode(predicted_seq, convert_to_tensor=True)
|
| 41 |
+
semantic_history_embeddings = semantic_model.encode(sem_list, convert_to_tensor=True)
|
| 42 |
cosine_scores = util.cos_sim(predicted_embeddings, semantic_history_embeddings)
|
| 43 |
|
| 44 |
for index, r in enumerate(result):
|
| 45 |
if len(semantic_text):
|
| 46 |
+
# for j_index in range(len(sem_list)):
|
| 47 |
+
if len(r['token_str'])>2: #skip spcial chars such as "?"
|
| 48 |
+
result[index]['score']+=float(sum(cosine_scores[index]))
|
| 49 |
if r['token_str'].lower().strip() in history_keyword_text.lower().strip() and len(r['token_str'].lower().strip())>1:
|
| 50 |
#found from history, then increase the score of tokens
|
| 51 |
result[index]['score']*=HISTORY_WEIGHT
|
|
|
|
| 53 |
#sort the results
|
| 54 |
df=pd.DataFrame(result).sort_values(by='score', ascending=False)
|
| 55 |
|
| 56 |
+
# show the results as a table
|
| 57 |
st.table(df)
|