File size: 3,319 Bytes
da676c8
40c9d2b
fe35e1b
da676c8
12094be
fe35e1b
 
 
da676c8
 
 
0dc2218
da676c8
7cf4d15
 
 
 
 
 
6dd0ae0
fe35e1b
7cf4d15
eacbe96
 
 
 
4fd1747
7cf4d15
12094be
ac5b8a7
4fd1747
eacbe96
fe35e1b
fa02d7f
 
f089045
7cf4d15
fa02d7f
 
38a8bac
12094be
eacbe96
fe35e1b
 
7cf4d15
fe35e1b
 
 
 
7f77d3a
0dc2218
7f77d3a
 
 
4677bcd
 
fe35e1b
 
 
0dc2218
fe35e1b
 
 
7cf4d15
fe35e1b
7cf4d15
 
 
fe35e1b
7cf4d15
fe35e1b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import streamlit as st
import pandas as pd
from streamlit import cli as stcli
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import sys

HISTORY_WEIGHT = 100 # set history weight (if found any keyword from history, it will priorities based on its weight)

@st.cache(allow_output_mutation=True)
def get_model(model):
	return pipeline("fill-mask", model=model, top_k=10)#set the maximum of tokens to be retrieved after each inference to model

@st.cache(allow_output_mutation=True)
def loading_models(model='roberta-base'):
     return get_model(model), SentenceTransformer('all-MiniLM-L6-v2')

def main(nlp, semantic_model, data_load_state):
    data_load_state.text('Inference from model...')
    result = nlp(text+' '+nlp.tokenizer.mask_token)
    sem_list=[semantic_text.strip()]
    data_load_state.text('Checking similarity...')
    if len(semantic_text):
        predicted_seq=[rec['sequence'] for rec in result]
        predicted_embeddings = semantic_model.encode(predicted_seq, convert_to_tensor=True)
        semantic_history_embeddings = semantic_model.encode(sem_list, convert_to_tensor=True)
        cosine_scores = util.cos_sim(predicted_embeddings, semantic_history_embeddings)
    data_load_state.text('similarity check completed...')
    
    for index, r in enumerate(result):
        if len(semantic_text):
                if len(r['token_str'])>2: #skip spcial chars such as "?"
                    result[index]['score']+=float(sum(cosine_scores[index]))*HISTORY_WEIGHT
        if r['token_str'].lower().strip() in history_keyword_text.lower().strip() and len(r['token_str'].lower().strip())>1:
            #found from history, then increase the score of tokens
            result[index]['score']*=HISTORY_WEIGHT
    data_load_state.text('Score updated...')
            
    #sort the results        
    df=pd.DataFrame(result).sort_values(by='score', ascending=False)
    
#    show the results as a table
    st.table(df)
#    print(df)
    data_load_state.text('')
    
    
if __name__ == '__main__':
    if st._is_running_with_streamlit:
        st.markdown("""
# Auto-Complete
This is an example of an auto-complete approach where the next token suggested based on users's history Keyword match & Semantic similarity of users's history (log).
The next token is predicted per probability and a weight if it is appeared in keyword user's history or there is a similarity to semantic user's history
""")
        history_keyword_text = st.text_input("Enter users's history <Keywords Match> (optional, i.e., 'Gates')", value="")
        semantic_text = st.text_input("Enter users's history <Semantic> (optional, i.e., 'Microsoft' or 'President')", value="Microsoft")
        
        text = st.text_input("Enter a text for auto completion...", value='Where is Bill')
        
        
        
        model = st.selectbox("Choose a model", ["roberta-base", "bert-base-uncased"])
        
        data_load_state = st.text('1.Loading model ...')

#        semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
#        nlp = get_model(model)
        nlp, semantic_model = loading_models(model)
        
        main(nlp, semantic_model, data_load_state)
    else:
        sys.argv = ['streamlit', 'run', sys.argv[0]]
        sys.exit(stcli.main())