Spaces:
Running
Running
Update app.py
#1
by
reach-vb
HF Staff
- opened
app.py
CHANGED
|
@@ -18,76 +18,8 @@ from textwrap import dedent
|
|
| 18 |
|
| 19 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 20 |
|
| 21 |
-
def generate_importance_matrix(model_path, train_data_path):
|
| 22 |
-
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
print(f"Current working directory: {os.getcwd()}")
|
| 27 |
-
print(f"Files in the current directory: {os.listdir('.')}")
|
| 28 |
-
|
| 29 |
-
if not os.path.isfile(f"../{model_path}"):
|
| 30 |
-
raise Exception(f"Model file not found: {model_path}")
|
| 31 |
-
|
| 32 |
-
print("Running imatrix command...")
|
| 33 |
-
process = subprocess.Popen(imatrix_command, shell=True)
|
| 34 |
-
|
| 35 |
-
try:
|
| 36 |
-
process.wait(timeout=60) # added wait
|
| 37 |
-
except subprocess.TimeoutExpired:
|
| 38 |
-
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
|
| 39 |
-
process.send_signal(signal.SIGINT)
|
| 40 |
-
try:
|
| 41 |
-
process.wait(timeout=5) # grace period
|
| 42 |
-
except subprocess.TimeoutExpired:
|
| 43 |
-
print("Imatrix proc still didn't term. Forecfully terming process...")
|
| 44 |
-
process.kill()
|
| 45 |
-
|
| 46 |
-
os.chdir("..")
|
| 47 |
-
|
| 48 |
-
print("Importance matrix generation completed.")
|
| 49 |
-
|
| 50 |
-
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
| 51 |
-
if oauth_token.token is None:
|
| 52 |
-
raise ValueError("You have to be logged in.")
|
| 53 |
-
|
| 54 |
-
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
|
| 55 |
-
if split_max_size:
|
| 56 |
-
split_cmd += f" --split-max-size {split_max_size}"
|
| 57 |
-
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
| 58 |
-
|
| 59 |
-
print(f"Split command: {split_cmd}")
|
| 60 |
-
|
| 61 |
-
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
| 62 |
-
print(f"Split command stdout: {result.stdout}")
|
| 63 |
-
print(f"Split command stderr: {result.stderr}")
|
| 64 |
-
|
| 65 |
-
if result.returncode != 0:
|
| 66 |
-
raise Exception(f"Error splitting the model: {result.stderr}")
|
| 67 |
-
print("Model split successfully!")
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
| 71 |
-
if sharded_model_files:
|
| 72 |
-
print(f"Sharded model files: {sharded_model_files}")
|
| 73 |
-
api = HfApi(token=oauth_token.token)
|
| 74 |
-
for file in sharded_model_files:
|
| 75 |
-
file_path = os.path.join('.', file)
|
| 76 |
-
print(f"Uploading file: {file_path}")
|
| 77 |
-
try:
|
| 78 |
-
api.upload_file(
|
| 79 |
-
path_or_fileobj=file_path,
|
| 80 |
-
path_in_repo=file,
|
| 81 |
-
repo_id=repo_id,
|
| 82 |
-
)
|
| 83 |
-
except Exception as e:
|
| 84 |
-
raise Exception(f"Error uploading file {file_path}: {e}")
|
| 85 |
-
else:
|
| 86 |
-
raise Exception("No sharded files found.")
|
| 87 |
-
|
| 88 |
-
print("Sharded model has been uploaded successfully!")
|
| 89 |
-
|
| 90 |
-
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
| 91 |
if oauth_token.token is None:
|
| 92 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 93 |
model_name = model_id.split('/')[-1]
|
|
@@ -126,29 +58,11 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 126 |
print("Model converted to fp16 successfully!")
|
| 127 |
print(f"Converted model path: {fp16}")
|
| 128 |
|
| 129 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
| 130 |
-
|
| 131 |
-
if use_imatrix:
|
| 132 |
-
if train_data_file:
|
| 133 |
-
train_data_path = train_data_file.name
|
| 134 |
-
else:
|
| 135 |
-
train_data_path = "groups_merged.txt" #fallback calibration dataset
|
| 136 |
-
|
| 137 |
-
print(f"Training data file path: {train_data_path}")
|
| 138 |
-
|
| 139 |
-
if not os.path.isfile(train_data_path):
|
| 140 |
-
raise Exception(f"Training data file not found: {train_data_path}")
|
| 141 |
-
|
| 142 |
-
generate_importance_matrix(fp16, train_data_path)
|
| 143 |
-
else:
|
| 144 |
-
print("Not using imatrix quantization.")
|
| 145 |
username = whoami(oauth_token.token)["name"]
|
| 146 |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
| 147 |
quantized_gguf_path = quantized_gguf_name
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
else:
|
| 151 |
-
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
| 152 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
| 153 |
if result.returncode != 0:
|
| 154 |
raise Exception(f"Error quantizing: {result.stderr}")
|
|
@@ -218,32 +132,16 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 218 |
)
|
| 219 |
card.save(f"README.md")
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
)
|
| 231 |
-
except Exception as e:
|
| 232 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
| 233 |
-
|
| 234 |
|
| 235 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
| 236 |
-
if os.path.isfile(imatrix_path):
|
| 237 |
-
try:
|
| 238 |
-
print(f"Uploading imatrix.dat: {imatrix_path}")
|
| 239 |
-
api.upload_file(
|
| 240 |
-
path_or_fileobj=imatrix_path,
|
| 241 |
-
path_in_repo="imatrix.dat",
|
| 242 |
-
repo_id=new_repo_id,
|
| 243 |
-
)
|
| 244 |
-
except Exception as e:
|
| 245 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
| 246 |
-
|
| 247 |
api.upload_file(
|
| 248 |
path_or_fileobj=f"README.md",
|
| 249 |
path_in_repo=f"README.md",
|
|
@@ -266,7 +164,7 @@ css="""/* Custom CSS to allow scrolling */
|
|
| 266 |
"""
|
| 267 |
# Create Gradio interface
|
| 268 |
with gr.Blocks(css=css) as demo:
|
| 269 |
-
gr.Markdown("You must be logged in to use
|
| 270 |
gr.LoginButton(min_width=250)
|
| 271 |
|
| 272 |
model_id = HuggingfaceHubSearch(
|
|
@@ -276,28 +174,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 276 |
)
|
| 277 |
|
| 278 |
q_method = gr.Dropdown(
|
| 279 |
-
["
|
| 280 |
label="Quantization Method",
|
| 281 |
-
info="
|
| 282 |
-
value="
|
| 283 |
filterable=False,
|
| 284 |
visible=True
|
| 285 |
)
|
| 286 |
|
| 287 |
-
imatrix_q_method = gr.Dropdown(
|
| 288 |
-
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
| 289 |
-
label="Imatrix Quantization Method",
|
| 290 |
-
info="GGML imatrix quants type",
|
| 291 |
-
value="IQ4_NL",
|
| 292 |
-
filterable=False,
|
| 293 |
-
visible=False
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
-
use_imatrix = gr.Checkbox(
|
| 297 |
-
value=False,
|
| 298 |
-
label="Use Imatrix Quantization",
|
| 299 |
-
info="Use importance matrix for quantization."
|
| 300 |
-
)
|
| 301 |
|
| 302 |
private_repo = gr.Checkbox(
|
| 303 |
value=False,
|
|
@@ -305,73 +189,25 @@ with gr.Blocks(css=css) as demo:
|
|
| 305 |
info="Create a private repo under your username."
|
| 306 |
)
|
| 307 |
|
| 308 |
-
train_data_file = gr.File(
|
| 309 |
-
label="Training Data File",
|
| 310 |
-
file_types=["txt"],
|
| 311 |
-
visible=False
|
| 312 |
-
)
|
| 313 |
-
|
| 314 |
-
split_model = gr.Checkbox(
|
| 315 |
-
value=False,
|
| 316 |
-
label="Split Model",
|
| 317 |
-
info="Shard the model using gguf-split."
|
| 318 |
-
)
|
| 319 |
-
|
| 320 |
-
split_max_tensors = gr.Number(
|
| 321 |
-
value=256,
|
| 322 |
-
label="Max Tensors per File",
|
| 323 |
-
info="Maximum number of tensors per file when splitting model.",
|
| 324 |
-
visible=False
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
split_max_size = gr.Textbox(
|
| 328 |
-
label="Max File Size",
|
| 329 |
-
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
| 330 |
-
visible=False
|
| 331 |
-
)
|
| 332 |
-
|
| 333 |
-
def update_visibility(use_imatrix):
|
| 334 |
-
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
| 335 |
-
|
| 336 |
-
use_imatrix.change(
|
| 337 |
-
fn=update_visibility,
|
| 338 |
-
inputs=use_imatrix,
|
| 339 |
-
outputs=[q_method, imatrix_q_method, train_data_file]
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
iface = gr.Interface(
|
| 343 |
fn=process_model,
|
| 344 |
inputs=[
|
| 345 |
model_id,
|
| 346 |
q_method,
|
| 347 |
-
use_imatrix,
|
| 348 |
-
imatrix_q_method,
|
| 349 |
private_repo,
|
| 350 |
-
train_data_file,
|
| 351 |
-
split_model,
|
| 352 |
-
split_max_tensors,
|
| 353 |
-
split_max_size,
|
| 354 |
],
|
| 355 |
outputs=[
|
| 356 |
gr.Markdown(label="output"),
|
| 357 |
gr.Image(show_label=False),
|
| 358 |
],
|
| 359 |
-
title="Create your own
|
| 360 |
-
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
| 361 |
api_name=False
|
| 362 |
)
|
| 363 |
-
|
| 364 |
-
def update_split_visibility(split_model):
|
| 365 |
-
return gr.update(visible=split_model), gr.update(visible=split_model)
|
| 366 |
-
|
| 367 |
-
split_model.change(
|
| 368 |
-
fn=update_split_visibility,
|
| 369 |
-
inputs=split_model,
|
| 370 |
-
outputs=[split_max_tensors, split_max_size]
|
| 371 |
)
|
| 372 |
|
| 373 |
def restart_space():
|
| 374 |
-
HfApi().restart_space(repo_id="
|
| 375 |
|
| 376 |
scheduler = BackgroundScheduler()
|
| 377 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
|
|
|
| 18 |
|
| 19 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 20 |
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
if oauth_token.token is None:
|
| 24 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
| 25 |
model_name = model_id.split('/')[-1]
|
|
|
|
| 58 |
print("Model converted to fp16 successfully!")
|
| 59 |
print(f"Converted model path: {fp16}")
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
username = whoami(oauth_token.token)["name"]
|
| 62 |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
| 63 |
quantized_gguf_path = quantized_gguf_name
|
| 64 |
+
|
| 65 |
+
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
|
|
|
|
|
|
| 66 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
| 67 |
if result.returncode != 0:
|
| 68 |
raise Exception(f"Error quantizing: {result.stderr}")
|
|
|
|
| 132 |
)
|
| 133 |
card.save(f"README.md")
|
| 134 |
|
| 135 |
+
try:
|
| 136 |
+
print(f"Uploading quantized model: {quantized_gguf_path}")
|
| 137 |
+
api.upload_file(
|
| 138 |
+
path_or_fileobj=quantized_gguf_path,
|
| 139 |
+
path_in_repo=quantized_gguf_name,
|
| 140 |
+
repo_id=new_repo_id,
|
| 141 |
+
)
|
| 142 |
+
except Exception as e:
|
| 143 |
+
raise Exception(f"Error uploading quantized model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
api.upload_file(
|
| 146 |
path_or_fileobj=f"README.md",
|
| 147 |
path_in_repo=f"README.md",
|
|
|
|
| 164 |
"""
|
| 165 |
# Create Gradio interface
|
| 166 |
with gr.Blocks(css=css) as demo:
|
| 167 |
+
gr.Markdown("You must be logged in to use MLX-my-repo.")
|
| 168 |
gr.LoginButton(min_width=250)
|
| 169 |
|
| 170 |
model_id = HuggingfaceHubSearch(
|
|
|
|
| 174 |
)
|
| 175 |
|
| 176 |
q_method = gr.Dropdown(
|
| 177 |
+
["Q4", "Q8"],
|
| 178 |
label="Quantization Method",
|
| 179 |
+
info="MLX quantization type",
|
| 180 |
+
value="Q4",
|
| 181 |
filterable=False,
|
| 182 |
visible=True
|
| 183 |
)
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
private_repo = gr.Checkbox(
|
| 187 |
value=False,
|
|
|
|
| 189 |
info="Create a private repo under your username."
|
| 190 |
)
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
iface = gr.Interface(
|
| 193 |
fn=process_model,
|
| 194 |
inputs=[
|
| 195 |
model_id,
|
| 196 |
q_method,
|
|
|
|
|
|
|
| 197 |
private_repo,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
],
|
| 199 |
outputs=[
|
| 200 |
gr.Markdown(label="output"),
|
| 201 |
gr.Image(show_label=False),
|
| 202 |
],
|
| 203 |
+
title="Create your own MLX Quants, blazingly fast ⚡!",
|
| 204 |
+
description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.",
|
| 205 |
api_name=False
|
| 206 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
)
|
| 208 |
|
| 209 |
def restart_space():
|
| 210 |
+
HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True)
|
| 211 |
|
| 212 |
scheduler = BackgroundScheduler()
|
| 213 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|