Spaces:
Sleeping
Sleeping
File size: 8,801 Bytes
2b3c5ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import re
import torch
import numpy as np
from tqdm import trange
def select_sentences(paragraph, num_sentences):
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
if num_sentences < 0:
last_sentences = sentences[num_sentences:]
elif num_sentences > 0:
last_sentences = sentences[:num_sentences]
selected = ' '.join(last_sentences)
return selected
def getitem(dataset, index):
inputs = dict()
inputs['input_ids'] = torch.LongTensor([dataset['input_ids'][index]])
inputs['attention_mask'] = torch.LongTensor([dataset['attention_mask'][index]])
return inputs
def reconstructionLoss(blocks, tokenizer, model, device):
scores = []
model.eval()
inputDataset = tokenizer(blocks)
loss_fn = torch.nn.CrossEntropyLoss(reduction = 'sum')
for i in range(len(blocks)):
inputs = getitem(inputDataset, i)
dl_input = dict()
dl_input['summ_input_ids'] = inputs['input_ids'].to(device)
dl_input['summ_attention_mask'] = inputs['attention_mask'].to(device)
dl_input['exp_decoder_ids'] = inputs['input_ids'].to(device)
dl_input['exp_attention_mask'] = inputs['attention_mask'].to(device)
labels = torch.flatten(inputs['input_ids']).to(device)
outputs = model(dl_input)
score = loss_fn(outputs.squeeze(), labels.squeeze())
scores.append(score.item())
return scores[0]
def paragraphLoss(paragraph1, paragraph2, tokenizer, model, device):
model.eval()
splitScore1 = reconstructionLoss([paragraph1], tokenizer, model, device)
splitScore2 = reconstructionLoss([paragraph2], tokenizer, model, device)
splitScore = splitScore1 + splitScore2
mergedParas = paragraph1 + '\n' + paragraph2
mergedScore = reconstructionLoss([mergedParas], tokenizer, model, device)
return splitScore - mergedScore
class Document():
def __init__(self, text, tokenizer,
segsoft = '<block seg soft>', seghard = '<block seg hard>'):
'''
text: list of strings
index: float
'''
self.text = text
self.tokenizer = tokenizer
self.getSegString(segsoft, seghard)
self.segmentation = self.insertSeg(text)
def gettext(self):
return self.text
def getSegString(self, segsoft, seghard):
if (segsoft not in self.text) and (seghard not in self.text):
self.segStringSoft = segsoft
self.segStringHard = seghard
else:
raise ValueError('Segment string invalid, provide unique segment strings!')
return 0
def insertSeg(self, article):
ansText = []
ansSeg = []
ansKey = []
tokenizer = self.tokenizer
for key, content in article.items():
if key in ['References', 'Reference']:
continue
for i in range(len(content)):
paragraph = content[i]
if i == len(content) - 1:
seg = self.segStringHard
ansText.append(paragraph)
ansSeg.append(seg)
ansKey.append(key)
break
follow = content[i+1]
twoPara = paragraph + ' ' + follow
if len(tokenizer(twoPara)['input_ids']) < 1024:
seg = self.segStringSoft
else:
seg = self.segStringHard
ansText.append(paragraph)
ansSeg.append(seg)
ansKey.append(key)
ans = {'text': ansText, 'seg': ansSeg, 'key':ansKey}
return ans
def show(self):
for i in range(len(self.segmentation['text'])):
print(self.segmentation['key'][i])
print(self.segmentation['text'][i])
print(self.segmentation['seg'][i])
print('\n')
def updateReconstrcutionLoss(self, lossScore, index, model, device):
model.eval()
lossScore.pop(index)
paragraph = self.segmentation['text'][index]
if index > 0:
if self.segmentation['seg'][index-1] == self.segStringHard:
lossScore[index-1] = np.inf
else:
before = self.segmentation['text'][index-1]
lossScore[index-1] = paragraphLoss(before, paragraph, self.tokenizer, model, device)
if index < len(self.segmentation['text'])-1:
if self.segmentation['seg'][index] == self.segStringHard:
lossScore[index-1] = np.inf
else:
follow = self.segmentation['text'][index+1]
lossScore[index] = paragraphLoss(paragraph, follow, self.tokenizer, model, device)
return lossScore
def merge(self, minPage, maxPage, model, device):
model.eval()
if minPage > len(self.segmentation['text']):
return len(self.segmentation['text'])
lossScore = []
for i in trange(len(self.segmentation['text']) - 1):
paragraph1 = self.segmentation['text'][i]
paragraph2 = self.segmentation['text'][i+1]
if self.segmentation['seg'][i] == self.segStringHard:
loss = np.inf
else:
loss = paragraphLoss(paragraph1, paragraph2, self.tokenizer, model, device)
lossScore.append(loss)
while(len(self.segmentation['text']) > maxPage and min(lossScore) < np.inf):
minScore = min(lossScore)
index = lossScore.index(minScore)
print('merging', index, 'and', index+1)
# update text
mergedParas = self.segmentation['text'][index] + '\n' + self.segmentation['text'][index+1]
self.segmentation['text'] = self.segmentation['text'][:index] + \
[mergedParas] + \
self.segmentation['text'][(index+2):]
# update key
self.segmentation['key'].pop(index+1)
# update segments
self.segmentation['seg'].pop(index)
paragraph = self.segmentation['text'][index]
if index > 0:
before = self.segmentation['text'][index-1]
twoPara1 = before + '\n' + paragraph
if len(self.tokenizer(twoPara1)['input_ids']) > 1024:
self.segmentation['seg'][index-1] = self.segStringHard
if index < len(self.segmentation['text'])-1:
follow = self.segmentation['text'][index+1]
twoPara2 = paragraph + '\n' + follow
if len(self.tokenizer(twoPara2)['input_ids']) > 1024:
self.segmentation['seg'][index] = self.segStringHard
# update loss
lossScore = self.updateReconstrcutionLoss(lossScore, index, model, device)
currentSegState = self.segmentation
currentSegScore = 0
miniSegScore = 0
while(len(currentSegState['text']) > minPage and min(lossScore) < np.inf):
minScore = min(lossScore)
currentSegScore += minScore
# update text
index = lossScore.index(minScore)
mergedParas = currentSegState['text'][index] + '\n' + currentSegState['text'][index+1]
currentSegState['text'] = currentSegState['text'][:index] + \
[mergedParas] + \
currentSegState['text'][(index+2):]
# update key
currentSegState['key'].pop(index+1)
currentSegState['seg'].pop(index)
paragraph = currentSegState['text'][index]
if index > 0:
before = currentSegState['text'][index-1]
twoPara1 = before + '\n' + paragraph
if len(self.tokenizer(twoPara1)['input_ids']) > 1024:
print('warning')
currentSegState['seg'][index-1] = self.segStringHard
if index < len(currentSegState['text'])-1:
follow = currentSegState['text'][index+1]
twoPara2 = paragraph + '\n' + follow
if len(self.tokenizer(twoPara2)['input_ids']) > 1024:
print('warning')
currentSegState['seg'][index] = self.segStringHard
# update score
lossScore = self.updateReconstrcutionLoss(lossScore, index, model, device)
if currentSegScore <= miniSegScore:
print('merging', index, 'and', index+1)
miniSegScore = currentSegScore
self.segmentation = currentSegState
return len(self.segmentation['text']) |