Spaces:
Sleeping
Sleeping
Create document.py
Browse files- document.py +210 -0
document.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import trange
|
5 |
+
|
6 |
+
|
7 |
+
def select_sentences(paragraph, num_sentences):
|
8 |
+
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
|
9 |
+
if num_sentences < 0:
|
10 |
+
last_sentences = sentences[num_sentences:]
|
11 |
+
elif num_sentences > 0:
|
12 |
+
last_sentences = sentences[:num_sentences]
|
13 |
+
selected = ' '.join(last_sentences)
|
14 |
+
return selected
|
15 |
+
|
16 |
+
def getitem(dataset, index):
|
17 |
+
inputs = dict()
|
18 |
+
inputs['input_ids'] = torch.LongTensor([dataset['input_ids'][index]])
|
19 |
+
inputs['attention_mask'] = torch.LongTensor([dataset['attention_mask'][index]])
|
20 |
+
|
21 |
+
return inputs
|
22 |
+
|
23 |
+
def reconstructionLoss(blocks, tokenizer, model, device):
|
24 |
+
scores = []
|
25 |
+
model.eval()
|
26 |
+
inputDataset = tokenizer(blocks)
|
27 |
+
loss_fn = torch.nn.CrossEntropyLoss(reduction = 'sum')
|
28 |
+
for i in range(len(blocks)):
|
29 |
+
inputs = getitem(inputDataset, i)
|
30 |
+
dl_input = dict()
|
31 |
+
dl_input['summ_input_ids'] = inputs['input_ids'].to(device)
|
32 |
+
dl_input['summ_attention_mask'] = inputs['attention_mask'].to(device)
|
33 |
+
dl_input['exp_decoder_ids'] = inputs['input_ids'].to(device)
|
34 |
+
dl_input['exp_attention_mask'] = inputs['attention_mask'].to(device)
|
35 |
+
|
36 |
+
labels = torch.flatten(inputs['input_ids']).to(device)
|
37 |
+
outputs = model(dl_input)
|
38 |
+
score = loss_fn(outputs.squeeze(), labels.squeeze())
|
39 |
+
scores.append(score.item())
|
40 |
+
return scores[0]
|
41 |
+
|
42 |
+
def paragraphLoss(paragraph1, paragraph2, tokenizer, model, device):
|
43 |
+
model.eval()
|
44 |
+
splitScore1 = reconstructionLoss([paragraph1], tokenizer, model, device)
|
45 |
+
splitScore2 = reconstructionLoss([paragraph2], tokenizer, model, device)
|
46 |
+
splitScore = splitScore1 + splitScore2
|
47 |
+
mergedParas = paragraph1 + '\n' + paragraph2
|
48 |
+
mergedScore = reconstructionLoss([mergedParas], tokenizer, model, device)
|
49 |
+
return splitScore - mergedScore
|
50 |
+
|
51 |
+
class Document():
|
52 |
+
def __init__(self, text, tokenizer,
|
53 |
+
segsoft = '<block seg soft>', seghard = '<block seg hard>'):
|
54 |
+
'''
|
55 |
+
text: list of strings
|
56 |
+
index: float
|
57 |
+
'''
|
58 |
+
self.text = text
|
59 |
+
self.tokenizer = tokenizer
|
60 |
+
self.getSegString(segsoft, seghard)
|
61 |
+
self.segmentation = self.insertSeg(text)
|
62 |
+
|
63 |
+
def gettext(self):
|
64 |
+
return self.text
|
65 |
+
|
66 |
+
def getSegString(self, segsoft, seghard):
|
67 |
+
if (segsoft not in self.text) and (seghard not in self.text):
|
68 |
+
self.segStringSoft = segsoft
|
69 |
+
self.segStringHard = seghard
|
70 |
+
else:
|
71 |
+
raise ValueError('Segment string invalid, provide unique segment strings!')
|
72 |
+
return 0
|
73 |
+
|
74 |
+
def insertSeg(self, article):
|
75 |
+
ansText = []
|
76 |
+
ansSeg = []
|
77 |
+
ansKey = []
|
78 |
+
tokenizer = self.tokenizer
|
79 |
+
for key, content in article.items():
|
80 |
+
if key in ['References', 'Reference']:
|
81 |
+
continue
|
82 |
+
for i in range(len(content)):
|
83 |
+
paragraph = content[i]
|
84 |
+
if i == len(content) - 1:
|
85 |
+
seg = self.segStringHard
|
86 |
+
ansText.append(paragraph)
|
87 |
+
ansSeg.append(seg)
|
88 |
+
ansKey.append(key)
|
89 |
+
break
|
90 |
+
|
91 |
+
follow = content[i+1]
|
92 |
+
twoPara = paragraph + ' ' + follow
|
93 |
+
if len(tokenizer(twoPara)['input_ids']) < 1024:
|
94 |
+
seg = self.segStringSoft
|
95 |
+
else:
|
96 |
+
seg = self.segStringHard
|
97 |
+
ansText.append(paragraph)
|
98 |
+
ansSeg.append(seg)
|
99 |
+
ansKey.append(key)
|
100 |
+
ans = {'text': ansText, 'seg': ansSeg, 'key':ansKey}
|
101 |
+
return ans
|
102 |
+
|
103 |
+
def show(self):
|
104 |
+
for i in range(len(self.segmentation['text'])):
|
105 |
+
print(self.segmentation['key'][i])
|
106 |
+
print(self.segmentation['text'][i])
|
107 |
+
print(self.segmentation['seg'][i])
|
108 |
+
print('\n')
|
109 |
+
|
110 |
+
def updateReconstrcutionLoss(self, lossScore, index, model, device):
|
111 |
+
model.eval()
|
112 |
+
lossScore.pop(index)
|
113 |
+
paragraph = self.segmentation['text'][index]
|
114 |
+
if index > 0:
|
115 |
+
if self.segmentation['seg'][index-1] == self.segStringHard:
|
116 |
+
lossScore[index-1] = np.inf
|
117 |
+
else:
|
118 |
+
before = self.segmentation['text'][index-1]
|
119 |
+
lossScore[index-1] = paragraphLoss(before, paragraph, self.tokenizer, model, device)
|
120 |
+
if index < len(self.segmentation['text'])-1:
|
121 |
+
if self.segmentation['seg'][index] == self.segStringHard:
|
122 |
+
lossScore[index-1] = np.inf
|
123 |
+
else:
|
124 |
+
follow = self.segmentation['text'][index+1]
|
125 |
+
lossScore[index] = paragraphLoss(paragraph, follow, self.tokenizer, model, device)
|
126 |
+
|
127 |
+
return lossScore
|
128 |
+
|
129 |
+
def merge(self, minPage, maxPage, model, device):
|
130 |
+
model.eval()
|
131 |
+
if minPage > len(self.segmentation['text']):
|
132 |
+
return len(self.segmentation['text'])
|
133 |
+
|
134 |
+
lossScore = []
|
135 |
+
for i in trange(len(self.segmentation['text']) - 1):
|
136 |
+
paragraph1 = self.segmentation['text'][i]
|
137 |
+
paragraph2 = self.segmentation['text'][i+1]
|
138 |
+
if self.segmentation['seg'][i] == self.segStringHard:
|
139 |
+
loss = np.inf
|
140 |
+
else:
|
141 |
+
loss = paragraphLoss(paragraph1, paragraph2, self.tokenizer, model, device)
|
142 |
+
lossScore.append(loss)
|
143 |
+
|
144 |
+
while(len(self.segmentation['text']) > maxPage and min(lossScore) < np.inf):
|
145 |
+
minScore = min(lossScore)
|
146 |
+
index = lossScore.index(minScore)
|
147 |
+
print('merging', index, 'and', index+1)
|
148 |
+
# update text
|
149 |
+
mergedParas = self.segmentation['text'][index] + '\n' + self.segmentation['text'][index+1]
|
150 |
+
self.segmentation['text'] = self.segmentation['text'][:index] + \
|
151 |
+
[mergedParas] + \
|
152 |
+
self.segmentation['text'][(index+2):]
|
153 |
+
# update key
|
154 |
+
self.segmentation['key'].pop(index+1)
|
155 |
+
|
156 |
+
# update segments
|
157 |
+
self.segmentation['seg'].pop(index)
|
158 |
+
paragraph = self.segmentation['text'][index]
|
159 |
+
if index > 0:
|
160 |
+
before = self.segmentation['text'][index-1]
|
161 |
+
twoPara1 = before + '\n' + paragraph
|
162 |
+
if len(self.tokenizer(twoPara1)['input_ids']) > 1024:
|
163 |
+
self.segmentation['seg'][index-1] = self.segStringHard
|
164 |
+
|
165 |
+
if index < len(self.segmentation['text'])-1:
|
166 |
+
follow = self.segmentation['text'][index+1]
|
167 |
+
twoPara2 = paragraph + '\n' + follow
|
168 |
+
if len(self.tokenizer(twoPara2)['input_ids']) > 1024:
|
169 |
+
self.segmentation['seg'][index] = self.segStringHard
|
170 |
+
|
171 |
+
# update loss
|
172 |
+
lossScore = self.updateReconstrcutionLoss(lossScore, index, model, device)
|
173 |
+
|
174 |
+
currentSegState = self.segmentation
|
175 |
+
currentSegScore = 0
|
176 |
+
miniSegScore = 0
|
177 |
+
|
178 |
+
|
179 |
+
while(len(currentSegState['text']) > minPage and min(lossScore) < np.inf):
|
180 |
+
minScore = min(lossScore)
|
181 |
+
currentSegScore += minScore
|
182 |
+
# update text
|
183 |
+
index = lossScore.index(minScore)
|
184 |
+
mergedParas = currentSegState['text'][index] + '\n' + currentSegState['text'][index+1]
|
185 |
+
currentSegState['text'] = currentSegState['text'][:index] + \
|
186 |
+
[mergedParas] + \
|
187 |
+
currentSegState['text'][(index+2):]
|
188 |
+
# update key
|
189 |
+
currentSegState['key'].pop(index+1)
|
190 |
+
currentSegState['seg'].pop(index)
|
191 |
+
paragraph = currentSegState['text'][index]
|
192 |
+
if index > 0:
|
193 |
+
before = currentSegState['text'][index-1]
|
194 |
+
twoPara1 = before + '\n' + paragraph
|
195 |
+
if len(self.tokenizer(twoPara1)['input_ids']) > 1024:
|
196 |
+
print('warning')
|
197 |
+
currentSegState['seg'][index-1] = self.segStringHard
|
198 |
+
if index < len(currentSegState['text'])-1:
|
199 |
+
follow = currentSegState['text'][index+1]
|
200 |
+
twoPara2 = paragraph + '\n' + follow
|
201 |
+
if len(self.tokenizer(twoPara2)['input_ids']) > 1024:
|
202 |
+
print('warning')
|
203 |
+
currentSegState['seg'][index] = self.segStringHard
|
204 |
+
# update score
|
205 |
+
lossScore = self.updateReconstrcutionLoss(lossScore, index, model, device)
|
206 |
+
if currentSegScore <= miniSegScore:
|
207 |
+
print('merging', index, 'and', index+1)
|
208 |
+
miniSegScore = currentSegScore
|
209 |
+
self.segmentation = currentSegState
|
210 |
+
return len(self.segmentation['text'])
|